Five Years Integrated M.Sc. Physics

Sr.	Subject	Code	Scheme	Credits	Notional
No.			L-T-P	(Min.)	hours of
					Learning
					(Approx.)
	First Semester (1 st year of MSc)				Г
1	Waves and Mechanics	PH101	3-1-0	4	85
2	Basic Electronics	PH103	3-0-2	4	85
3	Thermodynamics and Statistical Physics	PH105	3-1-0	4	70
4	Numerical Methods and Computer Programming	PH107	3-0-2	4	85
5	Mathematics for Physical Sciences-I	MA123	3-1-0	4	70
6	Indian Value System and Social Consciousness	HS120	2-0-0	2	35
			Total	22	430
7	Vocational Training / Professional Experience	PHV01 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	PHP01	0-0-10	,	(20 x 10)
	Second Semester (1st year of MSc)				
1	Electromagnetic Theory-I	PH102	3-1-0	4	70
2	Semiconductor physics	PH104	3-0-2	4	85
3	Mathematics for Physical Sciences-II	<u>MA118</u>	3-1-0	4	70
4	Fundamentals of Electrical Engineering	<u>EE110</u>	3-0-2	4	85
5	English and Professional Communication	HS110	3-1-0	4	70
			Total	20	380
6	Vocational Training / Professional Experience	PHV02 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	PHP02	0-0-10	5	(20 x 10)
	Third Semester (2 nd year of MSc)				
1	Solid State Physics	PH201	3-0-2	4	85
2	Quantum Mechanics-I	PH203	3-1-0	4	70
3	Optics	PH205	3-0-2	4	85
4	State and Properties of Matter	CY205	3-1-2	5	100
5	Discrete Mathematical Structure	MA205	3-1-0	4	70
			Total	21	410
6	Vocational Training / Professional Experience	PHV03 /	0.0.10	-	200
	(Optional) (Mandatory for Exit)	PHP03	0-0-10	5	(20 x 10)
	Fourth Semester (2 nd year of MSc)	1			
1	Mathematical Methods in Physics	PH202	3-1-0	4	70
2	Classical Mechanics	PH204	3-1-0	4	70
3	Electromagnetic Theory-II	PH206	3-0-2	4	85
4	Laser and photonics	PH208	3-1-0	4	70
5	Data Structure	CS102	3-1-2	5	100
			Total	21	395
6	Vocational Training / Professional Experience	PHV04 /			200
	(Optional) (Mandatory for Exit)	PHP04	0-0-10	5	(20 x 10)
	Fifth Semester (3 rd year of MSc)	1	1		, , ,
1	Quantum Mechanics-II	PH301	3-1-0	4	70

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

Atomic and Molecular Physics						
Elective	2	Atomic and Molecular Physics	PH303	3-1-0	4	70
Elective	3	Fundamentals of Artificial Intelligence	CS300	3-0-2	4	85
Total 18-20 335-395	4	Elective	PH3AA	3-X-X	3/4	55/70/85
Vocational Training / Professional Experience (Optional) (Mandatory for Exit) Sixth Semester (3rd year of MSc)	5	Elective	PH3BB	3-X-X	3/4	55/70/85
Coptional (Mandatory for Exit) PHP05 Sixth Semester (3" year of MSc)				Total	18-20	335-395
Coptional) (Mandatory for Exit) PHP05 (20 x 10)	6	Vocational Training / Professional Experience	PHV05 /	0.0.10	١.	200
1 Statistical Mechanics PH302 3-1-0 4 70 2 Digital Electronics PH304 3-0-2 4 85 3 Interpretative Molecular Spectroscopy CY302 3-1-0 4 70 4 Elective PH30C 3-X-X 3/4 55/70/85 5 Elective PH30D 3-X-X 3/4 55/70/85 6 Vocational Training / Professional Experience (Optional) (Mandatory for Exit) PH406 / PHP06 0-0-10 5 200 (20 x 10) Seventh Semester (4th year of MSc) 1 Plasma Physics PH401 3-1-0 4 70 2 Nuclear Physics PH403 3-0-0 4 85 3 Condensed Matter Physics PH405 3-1-0 4 70 4 Elective PH403 3-2-2 4 85 3 Condensed Matter Physics PH405 3-1-0 4 70 4 Elective PH408 3-X-X 3/4 55/70/85 5 Elective PH409 3-0-		(Optional) (Mandatory for Exit)	PHP05	0-0-10	5	(20 x 10)
Digital Electronics		Sixth Semester (3 rd year of MSc)	•			
Secretative Molecular Spectroscopy	1	Statistical Mechanics	PH302	3-1-0	4	70
Elective	2	Digital Electronics	PH304	3-0-2	4	85
Elective	3	Interpretative Molecular Spectroscopy	CY302	3-1-0	4	70
Total 20 335-395	4	Elective	PH3CC	3-X-X	3/4	55/70/85
6 Vocational Training / Professional Experience (Optional) (Mandatory for Exit) PHV06 / PHP06 0-0-10 5 200 (20 x 10) Seventh Semester (4 th year of MSc) 1 Plasma Physics PH401 3-1-0 4 70 2 Nuclear Physics PH403 3-0-2 4 85 3 Condensed Matter Physics PH405 3-1-0 4 70 4 Elective PH40A 3-X-X 3/4 55/70/85 5 Elective PH4BB 3-X-X 3/4 55/70/85 6 Vocational Training / Professional Experience (Optional) (Mandatory for Exit) PHV07 / PHP07 0-0-10 5 200 (20 x 10) Eighth Semester (4 th year of MSc) 1 Computational Physics PH402 3-0-4 5 115 2 Particle Physics PH404 3-1-0 4 70 3 Elective PH404 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4DD 3-X-X 3/4 <td>5</td> <td>Elective</td> <td>PH3DD</td> <td>3-X-X</td> <td>3/4</td> <td>55/70/85</td>	5	Elective	PH3DD	3-X-X	3/4	55/70/85
(Optional) (Mandatory for Exit)				Total	20	335-395
Coptional) (Mandatory for Exit) PHP06 (20 x 10)	6	Vocational Training / Professional Experience	PHV06 /	0.0.10	-	200
1 Plasma Physics PH401 3-1-0 4 70 2 Nuclear Physics PH403 3-0-2 4 85 3 Condensed Matter Physics PH405 3-1-0 4 70 4 Elective PH40A 3-X-X 3/4 55/70/85 5 Elective PH4BB 3-X-X 3/4 55/70/85 6 Vocational Training / Professional Experience (Optional) (Mandatory for Exit) PHV07 / PHP07 0-0-10 5 200 (20 x 10) Eighth Semester (4th year of MSc) 1 Computational Physics PH402 3-0-4 5 115 2 Particle Physics PH404 3-1-0 4 70 3 Elective PH402 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 5 Elective PHP09 0-0-40 20 800		(Optional) (Mandatory for Exit)	PHP06	0-0-10	5	(20 x 10)
2 Nuclear Physics PH403 3-0-2 4 85 3 Condensed Matter Physics PH405 3-1-0 4 70 4 Elective PH4AA 3-X-X 3/4 55/70/85 5 Elective PH4BB 3-X-X 3/4 55/70/85 6 Vocational Training / Professional Experience (Optional) (Mandatory for Exit) PHV07 / PHP07 0-0-10 5 200 (20 x 10) Eighth Semester (4th year of MSc) 1 Computational Physics PH402 3-0-4 5 115 2 Particle Physics PH404 3-1-0 4 70 3 Elective PH400 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 6 Ninth Semester (5th year of MSc) PHP09 0-0-40 2		Seventh Semester (4 th year of MSc)				
3 Condensed Matter Physics PH405 3-1-0 4 70 4 Elective PH4AA 3-X-X 3/4 55/70/85 5 Elective PH4BB 3-X-X 3/4 55/70/85 6 Vocational Training / Professional Experience (Optional) (Mandatory for Exit) PHV07 / PHP07 0-0-10 5 200 (20 x 10) Eighth Semester (4th year of MSc) PH402 3-0-4 5 115 2 Particle Physics PH404 3-1-0 4 70 3 Elective PH402 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 5 Ninth Semester (5th year of MSc) PHP09 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40) 1	1	Plasma Physics	PH401	3-1-0	4	70
4 Elective PH4AA 3-X-X 3/4 55/70/85 5 Elective PH4BB 3-X-X 3/4 55/70/85 6 Vocational Training / Professional Experience (Optional) (Mandatory for Exit) PHV07 / PHP07 0-0-10 5 200 (20 x 10) Eighth Semester (4th year of MSc) PH402 3-0-4 5 115 2 Particle Physics PH404 3-1-0 4 70 3 Elective PH402 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 5 Ninth Semester (5th year of MSc) PHP09 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)	2	Nuclear Physics	PH403	3-0-2	4	85
Selective	3	Condensed Matter Physics	PH405	3-1-0	4	70
Total 20 335-395	4	Elective	PH4AA	3-X-X	3/4	55/70/85
6 Vocational Training / Professional Experience (Optional) (Mandatory for Exit) PHV07 / PHP07 0-0-10 5 200 (20 x 10) Eighth Semester (4 th year of MSc) 1 Computational Physics PH402 3-0-4 5 115 2 Particle Physics PH404 3-1-0 4 70 3 Elective PH4CC 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 5 Ninth Semester (5 th year of MSc) PHP09 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)	5	Elective	PH4BB	3-X-X	3/4	55/70/85
(Optional) (Mandatory for Exit) PHP07 0-0-10 5 (20 x 10) Eighth Semester (4 th year of MSc) 1 Computational Physics PH402 3-0-4 5 115 2 Particle Physics PH404 3-1-0 4 70 3 Elective PH4CC 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 Ninth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP09 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)				Total	20	335-395
Coptional) (Mandatory for Exit)	6	Vocational Training / Professional Experience	PHV07 /	0.0.10	-	200
1 Computational Physics PH402 3-0-4 5 115 2 Particle Physics PH404 3-1-0 4 70 3 Elective PH4CC 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 Total 20-21 365-425 Ninth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP09 0-0-40 20 800 (20 X 40) Tenth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)		(Optional) (Mandatory for Exit)	PHP07	0-0-10	5	(20 x 10)
2 Particle Physics PH404 3-1-0 4 70 3 Elective PH4CC 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 Ninth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP09 0-0-40 20 800 (20 X 40) Tenth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)		Eighth Semester (4th year of MSc)				
3 Elective PH4CC 3-1-0 4 70 4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 Total 20-21 365-425 Ninth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP09 0-0-40 20 800 (20 X 40) Tenth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)	1	Computational Physics	PH402	3-0-4	5	115
4 Elective PH4DD 3-X-X 3/4 55/70/85 5 Elective PH4EE 3-X-X 3/4 55/70/85 Total 20-21 365-425 Ninth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP09 0-0-40 20 800 (20 X 40) Total 20 800 (20 X 40) Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)	2	Particle Physics	PH404	3-1-0	4	70
5 Elective PH4EE 3-X-X 3/4 55/70/85 Total 20-21 365-425 Ninth Semester (5 th year of MSc) PHP09 0-0-40 20 800 (20 X 40) 1 Dissertation Final (FD) Total 20 800 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)	3	Elective	PH4CC	3-1-0	4	70
Total 20-21 365-425 Ninth Semester (5 th year of MSc) Dissertation Final (FD) PHP09 0-0-40 20 800 (20 X 40) Total 20 800 Tenth Semester (5 th year of MSc) PHP10 0-0-40 20 800 (20 X 40) Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40) Total 20 800 (20 X 40) 20 800 (20 X 40) Total 20 800 (20 X 40) Total 20 800 (20 X 40) 20 800 (20 X 40) 20 800 (20 X 40) Total 20 800 (20 X 40) 20 800 (20 X 40)	4	Elective	PH4DD	3-X-X	3/4	55/70/85
Ninth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP09 0-0-40 20 800 (20 X 40)	5	Elective	PH4EE	3-X-X	3/4	55/70/85
1 Dissertation Final (FD) PHP09 0-0-40 20 800 (20 X 40) Image: Comparison of the properties of the propert				Total	20-21	365-425
PHP09 0-0-40 20 (20 X 40) Total 20 800 Tenth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)		Ninth Semester (5 th year of MSc)				
Total 20 800	1	Dissertation Final (FD)	DLIDOO	0.0.40	20	800
Tenth Semester (5 th year of MSc) 1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)			PHPU9	0-0-40	20	(20 X 40)
1 Dissertation Final (FD) PHP10 0-0-40 20 800 (20 X 40)				Total	20	800
PHP10 0-0-40 20 40)		Tenth Semester (5 th year of MSc)				
40)	1	Dissertation Final (FD)	DHD10	0-0-40	20	800 (20 X
Total 20 800			LUL10	0-0-40	20	40)
				Total	20	800

Sr. No.	Elective	Code	Scheme L-T-P
1	Basic Course on Relativity	PH351	3-1-0

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

2	Material Science	PH352	3-1-0
3	Basic of Astronomy and Astrophysics	PH353	3-1-0
4	Solar Cell Technology	PH354	3-1-0
5	Nanoscience and Nanotechnology	PH355	3-1-0
6	Electronics and optical communication	PH356	3-1-0
7	Remote sensing	PH357	3-1-0
8	Many Body Physics and Relativistic Quantum Mechanics	PH358	3-1-0
9	Astrophysics and space science	PH451	3-1-0
10	Microprocessor and Microcontrollers	PH452	3-0-2
11	Characterization Techniques	PH453	3-0-2
12	Density Functional Theory	PH454	3-1-0
13	Elementary Excitation in Solids	PH455	3-1-0
14	Green's Function and Partial Differential Equations	PH456	3-1-0
15	Simulations and Modelling	PH457	3-1-0
16	Advanced Crystallography	PH458	3-1-0
17	Electromagnetic Communication	PH459	3-1-0
18	Global Navigation Satellite System	PH460	3-0-2
19	Quantum Field Theory	PH461	3-1-0
20	Thin Films and Vacuum Technology	PH462	3-1-0
21	Nuclear Science and Techniques	PH463	3-0-0
22	Non Destructive Testing	PH464	3-0-0
13	Microwave Plasma	PH465	3-0-0

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

First Year of Five Years of Integrated M.Sc. (Physics)	Scheme	L	Т	Р	Credit
M.Sc I, Semester - I					
WAVES AND MECHANICS		_			_
PH101		3	1	0	04

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Provide a basic understanding of vector algebra and coordinate systems.
CO2	Define the concepts of various laws of motion and moments of inertia.
CO3	Explain Euler's concepts related to rigid body motion.
CO4	Interpret the elastic properties of materials and rephrase the concept of hydrodynamics.
CO5	Develop an understanding of simple harmonic motions via various applications.
CO6	Classify waves and oscillations.

2.	Syllabus			
	FUNDAMENTALS OF VECTOR ALGEBRA AND DIFFERENT COORDINATE SYSTEMS	(07 Hours)		
	Unit vectors, Vector operations, Scalar and vector triple products, Vector algebra components, Differential calculus, Cartesian coordinate system, Cylindrical coo Spherical coordinate system.			
	NEWTON'S LAWS OF MOTION, CONSERVATION LAWS, AND MOMENTS OF INERTIA	(08 Hours)		
	Mechanics of single and many particles, Equation of motion, Various conservation laws of inertia, Motion in the centra			
	RIGID BODY MOTION	(08 Hours)		
	Euler's theorem, Angular momentum and kinetic energy, Euler's equation of motion, Euler's ang			
	ELASTICITY AND HYDRODYNAMICS	(08 Hours)		
	Stress and strain, Young's modulus, Shear modulus and Bulk modulus, Buoyancy, Tyl Bernoulli's equation, Viscosity, Terminal velocity.	oes of fluid flow,		
	WAVES	(07 Hours)		
	Wave Motion, Interference and the principle of superposition, Reflection and transmission of waves Standing waves, Vibration, Transverse and longitudinal waves; Propagation of sound wave, its properties, Beats, Diffraction, Doppler effect.			
	OSCILLATIONS	(07Hours)		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

Simple Harmonic Oscillations, Damped Oscillations, Coupled Oscillations, and Resonance.	
Tutorials will be based on the coverage of the above topics separately	(15 Hours)
(Total Contact Time: 45 Hours + 15 H	lours = 60 Hours)

3.	Tutorials
1.	Proof of various relations formed using the different kind of vectors.
2.	Cover the various mechanical and electrical problems based on vector analysis.
3.	Though the numerical exercise one will learn the role of coordinate systems to solve the problems.
4.	Problems based on the motion of a single and many particles under the influence of different kind of forces.
5.	Projectile motion of particle, Motion of a charged particle in electromagnetic fields, Various problems related to moment of inertia.
6.	Numerical questions based on the aspects covered in the section of rigid body motion.
7.	Various types of questions for the calculation of stress, strain, young's modulus, shear modulus and bulk modulus;
8.	Numerical problems based on Bernoulli principles and terminal velocity.
9.	Basic numerical questions to understand the concept of waves on string and sound waves both and obtain various physical parameters used to quantify the waves.
10.	Problems based on simple harmonic motion, damped and coupled oscillations etc.

4.	BOOKS RECOMMENDED
1.	Mathur D. S., Mechanics, S. Chand & Company, 2000.
2.	Takwale R. G. & Puranik P. S., Introduction to Classical Mechanics, Tata McGraw-Hill Book Co., 1997.
3.	Feynman R. P., Lighton R. B. and Sands M., The Feynman Lectures in Physics Vol. 1, Narosa Publishers, 2008.
4.	Verma H. C., Concepts of Physics, Vol. 1 & 2, Bharati Bhavan, 2007.
5.	Landau L. D. & Lifshitz E M, Course on Theoretical Physics, Vol. 1: Mechanics, Addison- Wesley, 2002

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

First year of Five Years Integrated M.Sc. (Physics)	Scheme	L	Т	Р	Credit
M.Sc. – I, Semester – I					
BASIC ELECTRONICS		2	4	^	04
PH103		3	1	U	04

1.	Course Outcomes (COs):
	At the end of the semester students will be able to
CO1	Understand the basis concept of circuit analysis theorem
CO2	Demonstrate familiarity with basic electronic components and use them to design simple
	electronic circuits
CO3	Describe the application of transistors for Current and voltage amplification. Also, to describe the
	characteristics of different configurations of the transistor
CO4	Discuss the ideal of operational amplifier and their electrical parameters
CO5	Analyze and design the different types of Oscillators, and their applications

2.	Syllabus	
	BASIC CIRCUIT ANALYSIS	(06 Hours)
	Kirchhoff's current and voltage law, Network analysis, Superposition theorems	•
	SEMICONDUCTOR JUNCTION DIODES & APPLICATIONS	(08 Hours)
	The open circuit p-n junction, Energy bands in junction diode, I-V characteristi diode as rectifier, Half-wave, full-wave, and bridge rectifier. Various application	
	SEMICONDUCTOR TRANSISTOR & APPLICATIONS	(08 Hours)
	Junction transistor, transistor construction, CB, CE and CC configurations, cut- regions, transistor load-line, Quiescent point, Transistor as an amplifier, Curren gain.	
	FREQUENCY RESPONSE OF AMPLIFIERS	(07 Hours)
	The gain-bandwidth product, frequency response of CB, CE and CC amplifier amplifiers, Feed-back in amplifiers and its classification, Study of different proback Amplifier applications.	
	OPERATIONAL AMPLIFIERS	(08 Hours)
	The differential amplifier, The basic operational amplifier, The emitter-co amplifier, Transfer characteristics of a differential amplifier, Offset error volt Parameters, Frequency response.	•
	OSCILLATORS	(08 Hours)
	Criteria for oscillation, tank circuit, L-C oscillator, Hertley Oscillator, Colpitt oscillator, the Wien bridge oscillator, Crystal oscillator.	cillator, The phase

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

	Practical will be based on the coverage of the above topics separately	(30 Hours)
	(Total Contact Time: 45 Hours + 30	Hours = 75 Hours)

3.	Practical
1.	Study and verification of Norton's Theorem.
2.	Study and verification of Thevenin's Theorem.
3.	Study and verification of Reciprocity Theorem.
4.	Study and verification of Superposition Theorem.
5.	Study and verification of Maximum Power Theorem.
6.	Study of Half Wave Rectifier.
7.	Study of Full Wave Rectifier.
8.	Study of Full Wave Bridge Rectifier.

4.	Books Recommended
1.	Ryder, J.D., Electronics fundamentals and applications: Integrated and Discrete Systems, Prentice – Hall of India,1999.
2.	Sze, S.M., Physics of Semiconductor Devices, John Wiley & sons, 1981.
3.	Floyd, T.L., Electronic Devices (5th ed). Pearson education Asia (2001).
4.	Malvino, A.P. Electronic Principles, Tata McGraw Hill,1999.
5.	Mottershed, A., Electronic Devices and circuits, Prentice Hall India,1989.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

First year of Five Years Integrated M.Sc. (Physics)	Scheme	L	Т	P	Credit	
M.Sc. – I, Semester – I						
THERMODYNAMICS AND STATISTICAL PHYSICS		2	1	^	04	
PH105		3		U	04	

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Understand the fundamental concepts of thermodynamics laws and thermodynamic processes.
CO2	Acquire the knowledge of Maxwell's thermodynamics relations and thermodynamic potentials.
CO3	Learn the concepts of black body radiation from thermodynamics point of view.
CO4	Develop the fundamental concept of kinetic theory of gases.
CO5	Understand the properties of ideal gas and real Van der wall's gas state.
CO6	Learn various statistical distributions.

2.	Syllabus	
	FUNDAMENTALS OF THERMODYNAMICS	(10 Hours)
	Zeroth law of Thermodynamics, First and Seond laws of Thermodynamics, Work Thermodynamic process, Heat capacity and Specific heat capacity, Internal energine, Carnot Cycle and Theorem, Calculations of change of internal energy various thermodynamic processes.	ergy and entropy,
	THERMODYNAMICS POTENTIALS &MAXWELLS RELATIONS	(08 Hours)
	Internal Energy, Gibbs and Helmholtz energy, Gibbs paradox and its resolution, Enthermodynamic relations, Application of Maxwell's thermodynamic relations.	thalpy, Maxwell's
	THERMODYNAMICS OF BLACK BODY	(06 Hours)
	Black body and characteristics, Radiation principles like Rayleigh Jeans, Weins as black body radiation.	nd Planck's law of
	KINETIC THEORY OF GASES	(07 Hours)
	Maxwell Boltzmann equation, Postulates of kinetic theory of gases, velocity of Molecular energy, Kinetic-molecular model of an ideal-gas, kinetic interpretation Degree of freedom of gas molecules, Maxwell's law of equipartition of energy.	-
	TRANSPORT PROPERTIES	(07Hours)
	Viscosity of a gas, Thermal conductivity of gases, Van der wall's equation of motion.	f state, Brownian

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

BASIS OF STATISTICAL PHYSICS	(07 Hours)
Concept of microstate and macro state, Phase space, Principle of equal a Thermodynamic probability, Fermi Dirac, Maxwell Boltzmann and Bose Einstei	•
Tutorials will be based on the coverage of the above topics separately	(15 Hours)
(Total Contact Time: 45 Hours + 15	Hours = 60 Hours)

3.	Tutorials
1.	Cover a variety of numerical problems to understand the concepts of thermodynamics.
2.	Problems based on refrigerator, heat engine and Carnot engine to understand its working principle through.
3.	Calculation of various equilibrium quantitates such as heat capacity, internal energy, pressure, volume, temperature etc. using the thermodynamics potential and Maxwell's relations.
4.	Numerical exercise on Maxwell Boltzmann equation and distribution function to understand its concepts used in Kinetic Theory of gases.
5.	Problems to obtain the various equilibrium quantities derived in the section of kinetic theory of gases.
6.	Problems based on transport properties of gases mainly focused on the calculation of viscosity and thermal conductivity.
7.	Problems based on radiation principles, Wein's and Planck's law related to the thermodynamics of black body radiation.
8.	Basic problems to get the idea about the various terminology used in statistical physics for example, microstate, macro state, configuration space, phase space, probabilities;
9.	problems based on Fermi Dirac, Maxwell Boltzmann and Bose Einstein distributions.

4.	Books Recommended
1.	Sears F. W. & Salingar, Thermodynamics, Kinetic theory and Statical Thermodynamics, 3rdEdition. Addison-Wesley/Pearson,1975.
2.	Young & Freedman, Sears and Zemansky's University Physics, Pearson Education, Singapore, 2004.
3.	Feymann R. P., Leighton R. B. and Sands M., The Feymann Lectures in Physics, Vol.1 Narosa Publishers, 2008.
4.	Zemanasky M. W., Heat and Thermodynamics, (McGraw Hill),1957

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Physics Five Years Integrated M.Sc. Physics

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

First year of Five Years Integrated M.Sc. (Physics)	Scheme	L	Т	Р	Credit	
M.Sc. – I, Semester – I						
NUMERICAL METHODS AND COMPUTER PROGRAMMING		2	4	^	04	
PH107		3	1	U	04	

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO 1	students will be able to understand basics about error and numerical solution method for solving Algebraic and Transcendental Equations
CO 2	Analyze about interpolation and curve fitting method for solve real world problems
CO 3	Understand about method for Numerical integration and Ordinary Differential Equations
CO 4	Understand of basics of computers and programming language
CO 5	students will be able to simulate that physical science problems by knowing some compiler languages

2.	Syllabus		
	BASICS OF COMPUTER PROGRAMMING	(10 Hours)	
	Operating systems, higher level compiler languages, algorithm; flow charting,	C Language:	
	Introduction to C language, identifiers and keywords, data types, constants and variable		
	expressions; input and output statements, conditional statements: while-loop, for-lo	•	
	loop; arrays; logical operators and expressions, structures: switch, break and continue	statements	
	C PROGRAMMING	(06 Hours)	
	C Language: functions; structures; pointer data type; random and sequential files, file	handling in C	
	NUMERICAL METHOD FOR FINDING ROOTS OF EQUATION	(06 Hours)	
	Error in Numerical Calculation, Errors and their computations, Absolute, relative an	d percentage	
	errors, general error formula Solutions of Algebraic and Transcendental Equation	ns, Bi-Section	
	Method, Graphical Method, Regular False, Newton Raphson Method		
	NUMERICAL INTERPOLATION AND POLYNOMIAL CURVE FITTING	(07 Hours)	
	Interpolation, Finite Difference, Forward difference, backward difference, Central Differ	ence, Newton	
	interpolation formula, Lagrange interpolation formula, Least Square Fitting Method & by polynomials	Curve Fitting	
	NUMERICAL METHOD FOR INTEGRATION AND ORDINARY DIFFERENTIAL EQUATIONS	(08 Hours)	
	Numerical Integration, Newton-Cote's formula, Trapezoidal, Simpson 1/3rd and 3/Weddle rules.	/8th rule and	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)				
Practical will be based on the coverage of the above topics separately (30 Hours)				
C Programs: Program writing in C for interpolation, integration, roots of equations, matrix diagonalization, solution of differential equations. Good programming practices.				
C PROGRAMMING PRACTICE (08 Hours)				
Runge–Kutta 2nd order and 4th order method,				
Numerical Solutions of Ordinary Differential Equations: Euler, Picard and Taylor series methods,				

3.	Practical
1	Error in numerical computation, error in construction of a model, approximations, Truncation error and their estimation
2	Solutions of Algebraic and Transcendental Equations using Newton Raphson method
3	Interpolation using Lagrange's formula
4	Linear square fitting and Curve fitting by polynomials method
5	Numerical Integration using Simpson 1/3 rd method
6	Numerical Solutions of Ordinary Differential Equations using Runge–Kutta Method
7	Writing and testing C program for Error calculation
8	Writing and testing C program for Newton Raphson method
9	Writing and testing C program for Lagrange's formula
10	Writing and testing C program for Curve fitting
11	Writing and testing C program for Simpson 1/3 rd method
12	Writing and testing C program for Runge–Kutta Method

4.	Books Recommended
1	Steven C. Chapra and Raymond P. Canale, Numerical Methods for Engineers. 7 th Edition, Tata McGraw Hill,2021
2	S. S. Sastry, Introductory Methods of Numerical Analysis , 2 nd Edition, PHI, 2012
3	J. D. Hoffman, Numerical Methods for Engineers and Scientist, 2 nd Edition, CRC Press, 2018
4	C. Xavier, C Language and Numerical Methods, 2 nd Edition, New Age publishers, 2007
5	Herbert Scheldt, C: The Complete Reference, 4 th Edition, McGraw Hill Education, 2018

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Physics Five Years Integrated M.Sc. Physics

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

First year of Five Years Integrated M.Sc. (Physics)	Scheme	L	T	Р	Credit
M.Sc. – I, Semester – I		3	1	0	04
MATHEMATICS FOR PHYSICAL SCIENCES-I					
MA123					

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Explain the basic concept of ordinary differential equation with its different forms and methods
CO2	Discuss the related Applications in Mathematical Modelling and with knowledge of Ordinary differential equations, can resolved here.
CO3	Narrate about the series solution and Frobenius series solution with different point
CO4	Illustrate the PDE with linear and Non-linear equations and its solution
CO5	Discuss the Vector calculus and System of Linear Algebraic equations

2.	Syllabus		
	ORDINARY DIFFERENTIAL EQUATION	(10Hours)	
	Reorientation of differential equation first order first degree, exact differ	rential equation and	
	Integrating factors, first order higher degree odes, solvable for p, y and x, Solvequations higher order, complementary functions, Particular Integrals, Linear with variable coefficient, Cauchy's Euler and Legendre's equation with variable	differential equation	
	of variation of parameters.		
	APPLICATION OF DIFFERENTIAL EQUATION (MATHEMATICAL MODELLING)	(07 Hours)	
	Modeling of Real world problems particularly Engineering System, Electrical naspread of epidemic (SI, SIS, SIR), Newton's Law of cooling. Single compartment is beam models.	· · · · · · · · · · · · · · · · · · ·	
	SERIES SOLUTION AND SPECIAL FUNCTIONS	(07 Hours)	
Regular point, Singular point, series solution of ODE of 2nd order with variable coefficient emphasis to differential equation of Legendre's and Bessel's for different cases of roo equations.			
	INRODUCTION TO PARTIAL DIFFERENTIAL EQUATION	(08 Hours)	
	Introduction to Partial differential equation, Formation of partial differential Equation, Partial differential Equation of first order, Linear partial differential equation of first order (Pp+Qq-R) a method of obtaining its general solution, Non-linear partial differential equation of first order for $q = 0$, $f(z, p, q) = 0$, $f(x, p) = g(y, q)$, $z = px + qy + f(p, q)$.		
	VECTOR CALCULUS	(07 Hours)	
	Scalar and vector point function, differential operator, gradient, directional derivative, diverge curl and Laplacian operator with their properties, Line integral, Surface Integral, Volume integreen's, Gauss and Stokes theorem (Only statement) & application.		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

SYSTEM OF LINEAR ALGEBRIC EQUATION	(06 Hours)	
Linear systems, Elementary row and column transformation, rank of matrix, consistency of line system of equations, Linear Independence and Dependence of vectors, Gauss Elimination method Gauss-Jorden Method, Gauss-Jacobi Iteration Method		
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)	
(Total Contact Time: 45 Hours + 15 Hours = 60 Hours)		

3.	Tutorials
1	Tutorial one will be related to Ordinary differential equations.
2	Tutorial two, also will be on ordinary differential equations with variable co-efficient.
3	Tutorial three will be on different examples of ordinary differential equations.
4	Tutorial four will be on Mathematical modelling.
5	Tutorial five will be on Series solution and other special cases of it.
6	Tutorial six will cover partial differential equations.
7	Tutorial seven will be on examples of partial differential equations.
8	Tutorial eight will be on Vector Calculus.
9	Tutorial nine will be on applications of Area, Volume.
10	Tutorial ten will be on system of linear algebraic equations

4.	Books Recommended
1	Kreyszing E., Advanced Engineering Mathematics, John Wiley & Sons, Singapore, Int Student Ed. 2015.
2	James Steward De, Calculus, Thomson Asia, Singapore, 2003.
3	O'Neel Peter., Advanced Engg. Mathematics, Thompson, Singapore, Ind. Ed. 2002.
4	Hilderband, F. B., Methods of Applied mathematics, PHI, New Delhi, 1968
5	Wiley C. R., Advanced Engineering Mathematics, McGraw Hill Inc., New York Ed. 1993,
	Reference Books
1	Ramana D. V., Higher Engg. Mathematics, The MaGraw-Hill Inc., New Delhi, 2007.
2	Hay George E., Vector and Tensor Analysis. Dover Publications, 2012.
3	Srimanta Pal, Subodh C. Bhunia, Engineering Mathematics, Oxford University Press, New Delhi, 2015.
4	Boas.Mary L., Mathematical Methods in the Physical Sciences, John Wiley & Sons, Ed. 2005.
5	Kapur. J. N., Mathematical Models in Biology and Medicine. East west Press, New Delhi 1985.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Physics Five Years Integrated M.Sc. Physics

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

B.Tech.1 /M.Sc. 1 Semester I/ II ENGLISH AND PROFESSIONAL COMMUNICATION	Scheme	L	Т	P	Credit
HS110		3	1	0	04

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	show enhanced reception towards the use of English language.
CO2	choose and employ appropriate words for professional communication.
CO3	develop sentences and text in English coherently and formally.
CO4	demonstrate overall improvement in oral communication.
CO5	analyze and infer from written and oral messages.

2.	Syllabus		
	COMMUNICATION	(05 Hours)	
	Introduction to Communication, Different forms of Communication, Barriers to and some remedies, Non-Verbal Communication – Types, Non-Verbal Co Intercultural Context.		
	VOCABULARY AND USAGE OF WORDS	(05 Hours)	
	Common Errors, Synonyms, Antonyms, Homophones, and Homonyms; One Wo Misappropriations; Indianisms; Redundant Words.	ord Substitution;	
	LANGUAGE THROUGH LITERATURE	(09 Hours)	
	Selected short stories, essays, and poems to discuss nuances of English language	ge.	
	LISTENING AND READING SKILLS	(06 Hours)	
	Types of listening, Modes of Listening-Active and Passive, Listening and note taking practice and activities Reading Comprehension (unseen passage-literary/scientific/technical) Skimming and so fact vs opinion, Comprehension practice		
	SPEAKING SKILLS	(10 Hours)	
	Effective Speaking, JAM, Presentation Skills- types, preparation and practice. Interviews- types preparation and mock interview; Group Discussion- types, preparation and practice		
	WRITING SKILLS	(10 Hours)	
	Prerequisites of effective writing, Memo-types, Letter Writing- types, Email etiquette and Netiquette, Résumé-types, Report Writing and its types, Editing.		
	Tutorials will be based on the coverage of the above topics separately	(15 Hours)	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

(Total Contact Time: 45 Hours + 15 Hours = 60 Hours)

3.	Tutorials
1	Letter and Resume
2	Group Discussion
3	Presentation Skills (Individual)
4	Role Play on Nonverbal communication
5	Group Presentation
6	Debate
7	Body language and intercultural communication
8	Listening Activities
9	Editing
10	Report Writing
11	Mock interviews
12	JAM

4.	Books Recommended
1	Kumar, Sanjay and Pushp, Lata. <i>Communication Skills</i> , 2 nd Edition, OUP, New Delhi, 2015.
2	Raman, Meenakshi & Sharma Sangeeta. <i>Technical Communication Principles and Practice</i> , 3 rd Edition, OUP, New Delhi, 2015.
3	Raymond V. Lesikar and Marie E Flatley. <i>Basic Business Communication skills for Empowering the Internet generation</i> . Tata McGraw Hill publishing company limited. New Delhi 2005.
4	Courtland L. Bovee, John V. Thill, and Mukesh Chaturvedi. "Business Communication Today." Ninth Edition. Pearson, 2009.
5	Mike Markel. "Practical Strategies for Technical Communication," Bedford/ St. Martin's Second Edition, 2016
6	Laura J. Gurak and John M. Lannon. "Strategies for Technical Communication in the Workplace," Pearson, 2013.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

First year of Five Years Integrated M.Sc. (Physics)	Scheme	L	T	Р	Credit
M.Sc. – I, Semester – II		3	1	0	04
ELECTROMAGNETICS – I					
PH102					

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Understand the basics of vector algebra, coordinate transformations and differential operators
CO2	Interpret the Coulomb's and Gauss's law and their application in electrostatics
CO3	Classify the electric fields in conductors and dielectrics and extend it to understand the polarization effects and apply to boundary value problems
CO4	Interpret the Lorentz force, Biot-Savert's and Ampere's law and their applications in magneto statics
CO5	Interpret the Legendre polynomials and Bessel functions and relate their applications
CO6	Understand the magnetization in materials and explain the magnetic fields in matter

2.	Syllabus	
	VECTOR CALCULUS	(07 Hours)
	Vector Algebra, Coordinate Systems and Transformations, Differential Length, Dand Differential Volume; Line, Surface and Volume Integrals, Gradient, Diverg Laplacian (Cartesian & Polar Coordinates)	
	ELECTROSTATICS	(07 Hours)
	Coulomb's Law, Intensity of Electric field, Gauss's Law and its Application, Diverge Electric Field, Electric Potential, Work and Energy in Electrostatics.	ence and curl of
	ELECTRIC FIELDS IN MATTER	(07 Hours)
	Conductors, Dielectrics, Polarization, The Field of Polarized Object, The Electric Boundary Conditions, Conduction and Convection Currents, Ohms Law	Displacement,
	BOUNDARY VALUE PROBLEMS	(08 Hours)
	Laplace equation in one-, two- and three-dimensions, 1st and 2nd uniqueness th image problem, Induced surface charge, Force and energy, Other image problems, variables, Multipole expansion.	
	MAGNETOSTATICS	(08 Hours)
	The Lorentz Force Law, Biot-Savert's law, The Divergence and Curl of Magnetic Field, Magneter vector potential, Magnetic flux density, Ampere Circuital Law and its Application.	
	MAGNETIC FIELDS IN MATTER	(08 Hours)
	Magnetization in Materials, The field of a Magnetized Object, The auxiliary field H, Linear a linear media, Magnetic Boundary Conditions	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

	Tutorials will be based on the coverage of the above topics separately	(15 Hours)
	(Total Contact Time: 45 Hours + 15 Ho	ours = 60 Hours)

3.	Tutorials
1.	Problems based on Vector calculus.
2.	Solving problems using concept of Surface and Volume Integrals, Gradient, Divergence
3.	Calculation of electric field applying Gauss's law.
4.	Problems based on the electric field in matter.
5.	Solving problems using concept of bound charges.
6.	Solving boundary value problems.
7.	Solving image problems
8.	Problem solving using Separation of variables method and Multipole expansion.
9.	Various types of problems for Calculation of magnetic field.

4.	Books Recommended
1.	Griffiths D. J., Introduction to Electrodynamics, 3rd Ed. Prentice – Hall of India Private Limited 1999.
2.	Edminister J. A., Schaum's Outline series, Theory and Problems of Electromagnetics, McGraw Hill,1993.
3.	Sadiku M.N.O., Elements of Electromagnetics, 3 rd Ed., Oxford University Press, 2003.
4.	Stewart J. V., Intermediate Electromagnetic Theory, Allied Publishers (with World Scientific), 2005.
5.	Jackson J. D., Classical Electrodynamics, Wiley Eastern,2012

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

First year of Five Years Integrated M.Sc. (Physics)	Scheme	L	T	Р	Credit
M.Sc. – I, Semester – II		3	0	2	04
SEMICONDUCTOR PHYSICS					
PH104					

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Understand the working of various FET devices and their applications
CO2	Understand the principle of operation of DIAC and TRIAC devices
CO3	Identify the principle of operation and structure of SCR devices
CO4	Interpret the concept of heterojunction devices and their applications
CO5	Classify the characteristics of various photonic devices
CO6	Examine the properties and applications of microwave devices

2.	Syllabus			
	INTRODUCTION	(06 Hours)		
	Semiconductor Fundamentals, intrinsic & extrinsic semiconductors, free carrier concentration and Fermi-level. Scattering and Drift, Mobility, Hall Effect, excess ca Semiconductor Contacts (Schottky and Ohmic), Schottky barriers; Schottky barrier characteristics, current flow across Schottky barrier: thermionic emission	rriers, Metal		
	VARIOUS FET DEVICES: INTRODUCTION, CHARACTERISTICS AND APPLICATION	(09 Hours)		
	Types of FET, JFET, MODFET, SIT, MOSFET, Structure and principle of operation of MOSFET, MC as an amplifier, MOSFET analysis, Threshold voltage. Power MOSFET, HEMT, Compare JFET BJT-List the merits of JFET over BJT, Principle of operation of CMOSFET.			
	DIAC, TRIAC: INTRODUCTION, CHARACTERISTICS AND APPLICATION	(06 Hours)		
	Structure of DIAC, DIAC Principle of operation, Structure, and principle of operati Applications of TRIAC.	on of TRIAC,		
	PNPN: INTRODUCTION, CHARACTERISTICS AND APPLICATION	(06 Hours)		
	The silicon-controlled rectifier, Device structure, Principle of operation, Equivalent circles Applications.			
	INTRODUCTION TO THE HETERO JUNCTIONS AND APPLICATIONS	(06 Hours)		
	Concept of Heterojunction, Multilayer Heterojunction, Energy band diagram for He Confinement of charge carrier, Application of Heterojunction.	terojunction,		
	PHOTONIC DEVICES: INTRODUCTION, CHARACTERISTICS AND APPLICATION	(06 Hours)		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

Light Emitting Diode (LED), Characteristics of LED, Materials and wavelength of light, Laser diode, Structure, Characteristics of laser diode, Photodiode and solar cell, Display devices, Operation of LCDs, LED, HDTV, Plasma displays			
MICROWAVE DEVICES: INTRODUCTION, CHARACTERISTICS AND APPLICATION (06 Hours)			
MESFET, HEMT			
Tutorials will be based on the coverage of the above topics separately (15 Hours)			
(Total Contact Time: 45 Hours + 15 Hours = 60 Hours)			

3.	Tutorials
1.	Study of the characteristics of Unijunction Transistor (UJT) and to calculate interbase resistance and intrinsic standoff ratio.
2.	To study the VI characteristic of TRIAC with positive and negative biasing and plot the curve between V $\&$ I.
3.	To study the phenomenon of holding current and latching current in TRIAC.
4.	To study the RC Phase shift oscillator using BJT.
5.	To study the VI characteristic of DIAC with positive biasing and plot the curve between V & I.
6.	Study and plot V-I characteristic of SCR.
7.	To study the phenomenon of holding current and latching current in SCR.
8.	To study the triggering of SCR using OP-AMP 741 and to study the application of SCR in alarm circuit.

4.	Books Recommended
1.	Schilling D.L. and Belove, C., Electronic Circuits: Discrete and Integrated, McGraw Hill, 1989.
2.	Streetman, B. & Banerjee S. Solid State Electronic Devices, Prentice Hall,2005.
3.	Boylestad R.L. and Nahselsky, L. Electronic Devices and Circuit Theory, Prentice Hall,2005.
4.	Liao S.Y., Microwave Devices and Circuits, Prentice Hall ,1996.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

First year of Five Years Integrated M.Sc. (Physics)	Scheme	L	T	Р	Credit
M.Sc. – I, Semester – II		3	1	0	04
MATHEMATICS FOR PHYSICAL SCIENCES -II					
MA118					

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Explain about infinite series
CO2	Discuss the Fourier series and periodic functions and with different period
CO3	Narrate the Fourier transform and theorems
CO4	Explain Complex Variables
CO5	Illustrate basic of statistics and sampling theory and estimation

2.	Syllabus				
	INFINITE SERIES	(05 Hours)			
	Introduction, Positive term series, Comparison test, Cauchy's root test, D'Alembert's test, Raabe's test, Logarithmic test, Integral test, Gauss's test,				
	FOURIER SERIES	(07 Hours)			
	Definition, Fourier series with arbitrary period, in particular periodic function with period 2 π . Fourier series of even and odd function, Half range Fourier series				
	FOURIER TRANSFORM AND FOURIER TRANSFORM OF AN INTEGRAL	(07 Hours)			
Fourier transform and its operational properties, Fourier Integral t solution, transform of derivatives, Inversion formula for Fourier transform		n, Fourier Cosine and			
	COMPLEX VARIABLES	(06 Hours)			
its appl		ic mathematical concept, Analytic function, Cauchy – Riemann equations, Harmonic functions, applications, Linear transformation of complex domain, bilinear transformations, conformal oping and its application, complex integration over closed contour.			
	BASIC OF STATISTICS AND PROBABILITY DISTRIBUTION	(06Hours)			
Reorientation of random experiments, events, probability and its distribution. &Poisson"s, their properties and Normal distribution, jointly distributed random values, function of random variable moments, moment generating functions.		om variables, expected			
	SAMPLING THEORY AND ESTIMATION	(07 Hours)			
	Some basics of sampling, statistical inference, Random Samples, Sampling distribution, Sample mean, variance and other statistics, point estimate and interval estimate confidence of interval, maximum likehood estimate.				
	TESTING OF HYPOTHESIS	(07 Hours)			

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

Sampling and Test of significance, Statistical hypothesis and significance, Type I and Type II errors, Test of significance. Level of Significance, single tail and two tail tests hypothesis Chi-square (2 χ)test, student"s t Test of significance of the mean of a random sample,t-test for difference of means of two small samples, Snedecor"s variance ratio test or F-test and tis applications.

Tutorials will be based on the coverage of the above topics separately

(15 Hours)

(Total Contact Time: 45 Hours + 15 Hours = 60 Hours)

3.	Tutorials
1.	Tutorial one will be related to infinite series.
2.	Tutorial two will be on different test of infinite series for its convergence.
3.	Tutorial three, will be on Fourier series.
4.	Tutorial four will be on Fourier transform.
5.	Tutorial five will cover examples of Fourier integral theorem.
6.	Tutorial six will be on Complex variables.
7.	Tutorial seven will cover basic of statistics.
8.	Tutorial eight will be based on Probability Distribution.
9.	Tutorial nine will be based on Sampling theory.
10.	Tutorial ten will be on Estimation: different test and its applications.

4.	Books Recommended
1.	Kreyszing E., Advanced Engineering Mathematics, John Wiley & Sons, Singapore, Int. Student Ed. 1995.
2.	Wiley C. R., Advanced Engineering Mathematics, McGraw Hill Inc., New York Ed. 1993
3.	O"Neil Peter., Advanced Engg. Mathematics, Thompson, Singapore, Ind. Ed. 2002.
4.	Greenbar Michael D., Advanced Engg. Mathematics, Pearson, Singapore, Ind. Ed. 2007.
5.	Ramana D. V., Higher Engg. Mathematics, The MaGraw-Hill Inc., New Delhi, 2007.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

First year of Five Years Integrated M.Sc. (Physics)	Scheme	L	T	Р	Credit
M.Sc. – I, Semester – II		3	0	2	04
FUNDAMENTALS OF ELECTRICAL ENGINEERING					
EE110					

1.	Course Outcomes (COs): At the end of the semester students will be able to
CO1	Apply different methods to solve dc circuits
CO2	Understand and solve coupled magnetic circuits
CO3	Apply vector algebra for single-phase and three-phase AC circuits
CO4	Understand the working principle of single-phase transformer and three-phase inductor motor
CO5	Understand electrical wiring for domestic circuits

2.	Syllabus			
	ELECTRICALNETWORKANALYSIS	(12 Hours)		
	Circuit Laws: KVL and KCL, Current division and voltage division rules, Independent and dependent sources, Mesh current analysis, Node voltage analysis, Thevenin's theorem, Norton's theorem, Source transformations, Superposition theorem, Maximum power transfer theorem, Reciprocity theorem, Star network to delta network transformation			
	MAGNETIC CIRCUITANDELECTROMAGNETICINDUCTION	(08 Hours)		
	Ampere's circuital law, the analogy between electric & magnetic circuits, se circuits, Faraday's law, Lenz law, self-inductance, mutual inductance, inductance, coefficient of coupling, Equivalent inductance of series, paral coupled coils, Analysis of coupled coils, dot rule, conductively coupled equiva	coefficient of mutual lel and series-parallel		
	SINGLE-PHASE AC CIRCUITS	(08 Hours)		
	Complex algebra and its application to the analysis of AC circuits, R-L, R-C, R-L-C series and parallel circuits, series, and parallel resonance.			
	THREE-PHASE AC CIRCUITS	(06 Hours)		
	Balanced three-phase systems, star and delta connections, the relation be variables in star and delta connections, three-phase phasor diagrams, and m in three-phase circuits.	·		
	SINGLEPHASETRANSFORMERS	(05 Hours)		
Construction and working principle of the transformer, transformer on no-load and diagram for transformer under no-load and loaded condition (with unity, lagging equivalent circuit, open circuit, and short circuit tests, losses in the transform voltage regulation		ing power factor load),		
	THREE-PHASEINDUCTIONMOTOR	(03 Hours)		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

Rotating magnetic field, construction and working principle, slip, equivalent c stages, losses, and efficiency.	ircuit, different power	
ELECTRIC WIRING AND ILLUMINATION	(03 Hours)	
Circuits in domestic wiring, Types of lamps, fixtures &reflectors, illumination schemes for domestic, industrial & commercial premises, Lumen requirements for different categories, working principle of tubelight (fluorescent tube), fan, and LED.		
Practical will be based on the coverage of the above topics separately	(30 Hours)	
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)		

3.	Practical
1	Study the different types of wiring in electrical circuits.
2	To study the working principle of tube light and fan.
3	Verifications of network theorems.
4	Hysteresis loop on CRO.
5	Power measurement in single phase R-L/R-C series circuits.
6	Verification of star-delta connections in a three-phase circuit.
7	Three-phase power measurement using two wattmeter method.
8	Determination of single-phase transformer equivalent circuit parameters using open-circuit and short-circuit tests.
9	Load test on a single-phase transformer.

4.	Books Recommended
1	Mittle. V.N. and Mittal. Arvind, Basic Electrical Engineering, 2 nd Edition, Tata-Mcgraw-Hill Education (India) Private Limited,2006
2	Boylestad. Robert, Introductory Circuit Analysis, 12 th Edition, Pearson Education India, 2013
3	Alexander. Charles K. and Sadiku. Matthew N.O., Fundamentals of Electric Circuits, 5 th Edition, McGraw-Hill Education (India) Private Limited., 2013
4	Kothari. D.P., and Nagrathl.J., Basic Electrical Engineering, 3 rd Edition, Tata Mcgraw-Hill Education (India) Private Limited, 2010
5	Wadhwa. C. L., Basic Electrical Engineering, 2 nd Edition 2011, New Age International Private Limited, 20111

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

B.Tech.1 /M.Sc. 1 Semester I/ II INDIAN VALUE SYSTEM AND SOCIAL CONSCIOUSNESS	Scheme	L	Т	P	Credit
HS120		2	0	0	02

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	interpret the important values that need to be cultivated
CO2	analyse the cultures depicted in Ramayana, Mahabharata, Jainism and Buddhism
CO3	review the structure of Indian knowledge system
CO4	discuss the significance of constitution of India
CO5	demonstrate social responsibility

2.	Syllabus	
	HUMAN VALUES AND CONSCIOUSNESS	(08 Hours)
	Human Values Definition and Classification of Values; The Problem of Hierarchy their Choice; Self-Exploration; 'Basic Human Aspirations; Right understanding and Physical Facility; fulfilment of aspirations; Understanding Happiness a Harmony at various levels. What Is Consciousness?; Can We Build A Conscious Machine?; Levels Of Conscious Matter And Beyond; Holistic Lifestyle; Dealing With Anxiety; Connecting Mind To Brains, And Programs.	g, Relationship nd Prosperity, ousness; Mind,
	INDIAN CULTURE AND HERITAGE	(07 Hours)
	Culture and its salient features: The Vedic – Upanishadic Culture and so aspirations in those societies; Culture in Ramayana and Mahabharata: The Iwoman, Concepts Maitri, Karuna, Seela, Vinaya, Kshama, Santi, Anuraga – as the stories and anecdotes of the Epics; The Culture of Jainism: Jaina conception and liberation, Buddhism as a Humanistic culture; The four Noble truths of Buddand Indian Culture;	deal Man and exemplified in of Soul, Karma
	INDIAN KNOWLEDGE SYSTEM	(08 Hours)
	Indian knowledge as a unique system, Place of Indian knowledge in manking Relevance of Indian knowledge to present day and future of mankind, Nation Knowledge; Structure of Indian Knowledge: Types of knowledge (para, apara), and the unscientific, Instruments for gaining and verifying knowledge, Knowledge, Lineages, Instruments - debate, epistemology and pedagogy, The inverted tredeductive, empirical knowledge, and evolution of knowledge; Disciplines of	ture of Indian, The scientific dge traditions: e – axiomatic,

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Physics

outline of the subjects, the major contributions and theories along with ti relevant: Mathematics; Astronomy; Physical Sciences; Cosmogony; Lang Astrology; Moral studies/righteousness; Statecraft and political philosophy	
INDIAN CONSTITUTION	(04 hours)
History of Making of the Indian Constitution; Philosophy of the Indian Constitutions Salient Features; Contours of Constitutional Rights & Duties; Organs of Parliament; Composition; Qualifications and Disqualifications; Powers and Fur	f Governance:
SOCIAL RESPONSIBILITY	(03 Hours)
Social Responsibility: Meaning and Importance, Different Approaches of Social Social Responsibility of Business towards different Stakeholders. Evolution an CSR in India.	
(Total Contact T	ime: 30 Hours)

3.	Books Recommended
1	D. K. Chaturvedi, Professional Ethics Values and Consciousness, Ane Books Pvt. Ltd., 2023.
2	R.R. Gaur, R Sangal, G. P. Bagaria, Human Values and Professional Ethics, Excel Books, New Delhi, 2010.
3	A.N. Tripathi, Human Values, New Age Intl. Publishers, New Delhi, 2004.
4	P R Rao, Indian Heritage and Culture, Sterling Publishers Pvt. Ltd, 1988.
5	D. Singh, Indian Heritage and Culture, APH Publishing Corporation, 1998.
6	Sri Prashant Pole, Treasure Trove of Indian knowledge, Prabhat Prakashan, 2021.
7	Sri Suresh Soni, Sources of our cultural heritage, Prabhat Prakashan, 2018.
8	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)