Second year of Five Years integrated M.Sc. (Mathematics) M.ScII, Semester-III L T		т	Ρ	С	
MS	201: BASIC SCIENCE ELECTIVE(BSE) FUNDAMENTALS OF CLASSICAL MECHANICS	3	0	0	3
•	MECHANICS OF A PARTICLE AND SYSTEM OF PARTICLES Equation of motion, Different conservation laws, Constrained motion Constraints, Degree of freedom, Generalized coordinates. VARIATIONAL PRINCIPLE AND LAGRANGIAN FORMULATIONS Calculus of variations, Variational technique for many independent of Euler Lgrangian differential equation	ı, 5 /ariabl	es,	(1) (1)) Hours)) Hours)
•	HAMILTONIAN FORMULATION OF MECHANICS Phase space and motion of the system, Hamilton's canonical equati significance of H, Advantage of Hamilton approach.	on of I	motion, P	(1) Physical	0 Hours)
•	SPECIAL THEORY OF RELATIVITY Frames of Reference, Postulates, Time dilation, Length contraction, Mass-Energy Relation, Lorentz' transformation.			(0)	6 Hours)
•	GENERAL THEORY OF RELATIVITY Space-time Fabric, Pinciple of equivalence, Euclidean and non-Euc	lidean	Continu	(0 8 um	8 Hours)

(Total Contact Hours (Theory) : 44 Hours)

BOOKS RECOMMENDED:

- 1. Mathur D. S., Mechanics, S. Chand & Company, 2000.
- 2. Takwale R. G. & Puranik P.S. Introduction to Classical Mechanics, TMH., 1997.
- 3. Feymann R. P., Lighton R. B. and Sands M., *The Feymann Lectures in Physics*, Vol. 1, Narosa Publishers, 2008.
- 4. Verma H. C., Concepts of Physics, Vol. 1 & 2, Bharati Bhavan, 2007.
- 5. Landau L. D. & Lifshitz E. M., Course on Theoretical Physics, Vol. 1: Mechanics, Addison-Wesley, 2002