Department Elective – II Fifth year of Five Years integrated M.Sc. (Physics) M.Sc. - V, Semester – IX

_ T P C 3 0 0 3

MP 551:

Advanced Condensed Matter Physics

Introductory Survey

(06 Hours)

General considerations, Basic Hamiltonian, Elementary excitations, The measurement of the elementary excitation spectrum. Scope of the subject.

• Electrons & Plasmas

(06 Hours)

Sommerfeld non interacting electron gas, Hartree and Hartree-Fock Approximations, Correlation and correlation energy: an introductory survey, Dielectric response of an electron system, Properties of the electron gas in the RPA, Properties of the electron gas at metallic densities.

Electrons, Plasmons and Photons in Solids

(10 Hours)

Introductory considerations, Modifications of ϵ (k,w), Experimental observation of plasmons in solids : characteristics energy-loss experiments, Optical properties of solids, Optical studies of solids

• Electron-Phonon Interaction in Metals

(10 Hours)

Basic Hamiltonian, New features associated with the electron-phonon interaction, General physical picture, Phonon frequencies and effective electron-electron interaction, The approach to equilibrium of a coupled electron-phonon system, High-temperature conductivity, More detailed calculations of the relaxation time, Low temperature conductivity, Quasi-particle properties.

Nanomaterials
(10 Hours)

Low dimensional structures and energy quantization, Plasmon band and exciton, Quantum dots, quantum wires and quantum wells. Synthesis, characterization and properties: Metallic, semiconducting, magnetic, and carbon based Nanostructures, nanocomposites, biological nanomaterials. Nanofabrication: Lithographic techniques for nanoprinting, nanomanipulation techniques, self assembly.

(Total Contact Time (Theory): 42 Hours)

BO 1.	OKS RECOMMENDED : C. Kittel,	Quantum Theory of Solids,	John Wiley,	1987
2.	G. D. Mahan	Many-Particle Physics	Plenum Press	1990
3.	David Pines	Elementary Excitations in Solids,	Benjamin	1964
4.	W. Fetter and J. D. Walecka	Quantum Theory of Many-Particle Systems	McGraw-Hill, New York,	1971
5.	A. S. Edelstein and R.C.Cammarata	Nanomaterials: Synthesis, properties and Applications,	IOP (UK)	1996