Fourth year of Five Years integrated M.Sc (Physics) M.Sc. – IV, Semester – VII			т	Р	С
MP 40	7: Computational Methods in Physics	3	2	0	5
•	TWO POINT BOUNDARY VALUE PROBLEMS Introduction, Improved approximations and Numerov's method, wave eqn. with constant acceleration, Schrodinger's eqn. for spherical potentials and its algorithm for solution, Green'function			(06 ⊢	lours)
•	PARTIAL DIFFERENTIAL EQUATIONS Introduction, Diffusion equation, Laplace's and Poissson's equations, Wave equation in two dimensions			(06 H	lours)
•	FOURIER ANALYSIS AND FOURIER TRANSFORM Fourier series of a periodic function, convergence theorem, completeness, boundary value problems, The fourier transform, convolution,FFT, DFT, applications			(10 H	lours)
•	MONTE-CARLO METHODS Introduction, Use of Monte-Carlo method in Integrations, particle in a box, radio active decay, examples			(06 H	lours)
•	MONTE-CARLO METHODS IN STATISTICAL PHYSICS Motivation, Review of statistical physics, Ising model and phase transitions			(07 H	lours)
•	QUANTUM MONTE-CARLO METHODS Introduction, Variational Monte-Carlo method for quantum mechanical systems, VMC for atoms			(07 H	lours)

(Total Contact Time (Theory) : 42 Hours)

BOOKS RECOMMENDED :

1.	Giordano N.J., and Nakanishi H.	Computational Physics	Pearson-Prentice-Hall	2005
2.	Landau R.H., and Paez M.J.	Computational Physics	Wiley	2007
3.	Chapra S.G., and Canale R.P.	Numerical methods for Engineers	McGraw Hill	2006
4.	Artfen and Weber	Methamatical methods for Physicists	Academic Press	2001
5.	Tao Peng	An Introduction to Computational Physics	Cambridge University Press	1997