Fourth year of Five Years integrated M.Sc (Physics) M.Sc. – IV, Semester – VIII

MP 404	t: Nuclear	and particle Physics	3	2	0	5
•	Nuclear Reactions: Conservation laws, isospin, reaction cross section, coulomb scattering, nuclear scattering, scattering cross section, optical model, compound nucleus, direct reactions, resonance reactions, neutron physics.			(08 Hours)		
•	Particle Accelerators and Detectors Electrostatic accelerators, cyclotron, synchrotron, linear accelerators, colliding bean accelerators, gas-filled counters, scintillation detectors, semiconductor detectors.			(0	5 Hoi	Jrs)
•	Preview of Particle Physics Historical Introduction, Classification and Natural Units			(02 Hours)		
•	Relativistic Kinematics Lorentz transformations, Four Vectors, Energy and momentum, Collisions.			(02 Hours)		
•	Symmetries and Quarks Symmetries, Groups, Conservation laws, Spin and Angular Momentum, Addition of angular momentum, Flavour symmetries, Parity, Charge conjugation, CP Violation, Time reversal and the CPT Theorem. Mesons, Baryons hadron masses and colour factor.			(0	4 Ho	irs)
•	BOUND STATES The schrodinger equation for the central potential, Hydrogen atom, Fine structure, Lamb shift, Hyperfine structure, Positronium, quarkonium, Light quark mesons, Baryon masses and magnetic moment.			(0	4 Hoi	urs)
•	FEYNMEN CALCULATION Life time and cross section, Golden Rule, The Feynman rules for toy theory, lifetime scattering, Higher order diagrams.			(05 Hours)		
•	QUANTUM ELECTRODYANAMICS Solution of Dirac equation, Bilinear Covariants, Photons, Feynman rules for QED, Cross sections and lifetimes Renormalizations, Elecron-quark interactions Hadron productions in e ⁺ e ⁻ scattering, Electron proton Scattering, The parton model and Bjorken Scaling.			(06 Hours)		
•	QUANTUM CHROMODYNAMICS Feynman rules for QCD, Quark-o QCD, Asymptotic freedom, Applie	quark interaction, Pair annihilation in cation of QCD		(0	6 Hoi	urs)
		(Total Con	tact Time (Theo	ry) : 4	2 Ηοι	ırs)
BOOK	S RECOMMENDED :					
1.	K. S. Krane	Introductory Nuclear Physics,	John Wiley (1988).		1988
2.	F. Halzen and A. D. Martin	Quarks and Lepton	John Wiley			1984
3.	D.H. Perkins	Introduction to high energy physics-4th Edn	Cambridge University P	ress		2000

Introduction to Elementary

Nuclear and Particle Physics

Particles

L

Harper & Row

Publication Addison Wesley 1987

1995

ТР

С

4. Griffiths D.

5. Burcham W. E. and Jobes M.