Fourth year of Five Years integrated M.Sc (Physics)		L	т	Ρ	С
MD 402	. Condensed Matter Physics-II	3	2	0	ł
•	Overview Crystal physics, Lattice vibration and thermal properties, Electronic properties, Dielectrics, Magnetism.		(05 Hours)		
•	Phase Transitions Review of critical phenomena through percolation. Phase transition in soft matter. Equilibrium phase diagrams, Kinetics of phase separation, Growth processes, Liquid-Solid transition, freezing and melting		(0	8 Hou	urs
•	Liquid Crystals Types of liquid crystals, Characterization and identification of liquid crystal phases, Orientational order, elastic properties, Phase transition in liquid crystals, Applications.Granular Materials through sandpile model and self- organized criticality.		(0	8 Hou	urs
•	Colloids Types of Colloids, Characterization of Colloids, Charge and steric Stabilization, Kinetic properties, Forms of colloids: Sols, Gels, Clays, Foams, Emulsions, Electrorheological and Magneto-rheological fluids.		(0	8 Hou	urs
•	Magnetism Review of magnetism, Circular and helical order. Consequences of broken symmetry, phase transition, Landau's theory, rigidity, excitation, magnons, domains and domain walls, magnetic ysteresis, pinning effects. Magneto resistance, giant magneto resistance, NMR, technological aspects of magnetic materials.		(0	7 Hou	urs
•	Introduction to Nanoscience The nanoscale dimension and paradigm, Definitions, history and current Practice, Overview of current industry applications, Nanoscale science and engineering principles.		(0	7 Hou	urs

(Total Contact Time (Theory) : 42 Hours)

BO 1.	OKS RECOMMENDED : C. Kittel,	Quantum Theory of Solids,	John Wiley,	1987
2.	R. A. L. Jones,	Soft Condensed Matter	Oxford	2002
3.	S. Blundell,	Magnetism in Condensed Matter,	Oxford	2001
4.	M. Tinkham,	Introduction to Superconductivity	McGraw-Hill, New York,	1996
5.	P. W. Anderson	Basic Notions of Condensed Matter Physics	Addison Wesley	1997