	Third Semester (2 nd year of MSc)				
1	Element of Analysis	MA201	3-1-0	4	70
2	Analytical Geometry	MA203	3-1-0	4	70
3	Discrete Mathematical Structure	MA205	3-1-0	4	70
4	Data Structure	MA231	3-0-2	4	85
5	English and Professional Communication – II	HS201	3-1-0	4	70
			Total	20	365
6	Mathematical Software-I	MAV03 /	0-0-10	5	200
	Vocational Training / Professional Experience	MAP03			(20 x 10)
	(Optional) (mandatory for exit)				
	Fourth Semester (2 nd year of MSc)				
1	Numerical Analysis	MA202	3-1-0	4	70
2	Linear Algebra	MA204	3-1-0	4	70
3	Elementary Number theory	MA232	3-1-0	4	70
4	Computational Life Science	MA233	3-1-0	4	70
5	Computer Networks	CS208	3-0-2	4	85
			Total	20	365
6	Mathematical Software-II	MAV04 /	0-0-10	5	200
	Vocational Training / Professional Experience	MAP04			(20 x 10)
	(Optional) (mandatory for exit)				

M.Sc. 2 rd Year (Mathematics) Semester – III Elements of Analysis	Scheme	L	Т	Р	Credit
MA 201		3	1	0	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	Discuss the convergence and divergence of sequences and series
CO2	Predict the existence of Riemann integral with their properties
CO3	Demonstrate the convergence of improper integral
CO4	Examine the uniform convergence using different tests
CO5	Develop the Fourier series in different intervals

2.	<u>Syllabus</u>			
	REAL SEQUENCES AND INFINITE SERIES	(14 Hours)		
	Sequences, Limit points of a sequence, Limits inferior and superior, Convergent sequences, Cauchy's general principle of convergence, A sequences, Some important theorems, Monotonic sequences. Positive terr Comparison test, Cauchy's root test, D'Alembert ratio test, Series with arbitrary			
	THE RIEMANN INTEGRAL	(06 Hours)		
	Definitions and existence of the integral, Refinement of partitions, Dar Conditions of integrability, Integrability of the sum and difference of Inte The integral as a limit of sums, Some integrable functions, Integration and The fundamental theorem of calculus, Mean value theorem, Integration by variable in an integral, Second mean value theorem.	boux's theorem, grable functions, d differentiation, parts, Change of		
	VECTOR OPERATORS	(05 Hours)		
	Green's, Gauss' & Stokes' theorem with proof.			
	IMPROPER INTEGRAL	(06 HOURS)		

Introduction, Integration of unbounded functions with finite limit	of	integration,	
Comparison tests for convergence of $\int_{a}^{b} f(x) dx$, Infinite range of integratio	n, In	tegrand as a	
product of functions.			
UNIFORM CONVERGENCE	(0	8 HOURS)	
Pointwise convergence, Uniform convergence on an interval, Tests for convergence, Properties of uniformly convergent sequences and series, The W approximation theorem.			
FOURIER SERIES		(06 Hours)	
Trigonometric series, Some preliminary theorems, The main theorem, Interaction $[-\pi, \pi]$.	erval	s other than	
Tutorials will be based on the coverage of the above topics separately.		(15 Hours)	
(Total Contact Time: 45 Hours + 15 Hours= 60 Ho	ours)		

3.	Tutorials
1	Tutorial on convergent and monotonic sequences.
2	Tutorial on Riemann integral, Green's, Stokes' and Gauss' theorem.
3	Tutorial on integration of unbounded functions and comparison tests of convergence.
4	Tutorial on pointwise convergence, uniform convergence and Weierstrass approximation theorem.
5	Tutorial on trigonometric series.
4.	Books Recommended:
1	W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw Hill, New York, 1976.
2	R. R. Goldberg, Methods of Real Analysis, Oxford and IBH Publishing, 1970.
3	T. Apostol, Mathematical Analysis, 2nd Edition, Narosa Publishers, 2002.
4	H. L. Royden, Real Analysis, 4th Edition, Macmilan Publishing Co. Inc., New York, 1993.
5	S. Narayan and M. D. Raisinghania, Elements of Real Analysis, 7th Edition, S. Chand Publication, New Delhi, 1980.

M.Sc. 2 rd Year (Mathematics) Semester – III Analytical Geometry	Scheme	L	Т	Р	Credit
MA 203		3	1	0	04

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	demonstrate the fundamentals of analytical geometry in Cartesian and polar coordinates
CO2	discuss the equation of straight line in different forms and related properties
CO3	solve the problems related to plane and sphere
CO4	evaluate the equation of cone and cylinder and their tangent plane
CO5	elaborate the equations and other properties related to plan section and conicoids

2.	<u>Syllabus</u>			
	ORIENTATION OF COORDINATE GEOMETRY	(08 Hours)		
	Distance between two points, Coordinates of a point which divides the line joining the give points in a given ratio, Equation of surfaces, Cylindrical coordinates, Polar coordinates, Ang between two lines, Direction cosines of a line, Direction ratios of a line, Projections, Projection of a line segment.			
	STRAIGHT LINE	(09 Hours)		
	General equation of straight line, Equations of a line in symmetrical form, Reduction of general equation of a line into symmetrical form, Angles between two lines, Angle between line and plane, Line intersecting two given lines, Locus of a line, Distance of a point from a line, Shortes distance between two lines, Equations of two skew lines in simplified form, Intersection of three planes.			
	PLANE AND SPHERE	(09 Hours)		
	General equation of a plane, Normal form of the equation of a plane, Projection of a segment, Angles between two planes, Equation of a plane in various forms, Length of perpendicular from a point to a plane, General equation of a plane passing through the line of intersection of two planes, General equation of sphere, Equation of sphere passing through four points, Sphere on the join of two points as diameter, Intersection of two sphere, Intersection of sphere and plane, Intersection of sphere and line, Angle of intersection of two sphere, Orthogonal sphere, Radical sphere.			
	THE CYLINDER AND CONE	(10 HOURS)		

Equation of a cylinder, Right circular cylinder and its equation, Interpretation of equations, Equation of tangent plane to a given cylinder, Cone and its equation, Cone with vertex at origin, Right circular cone, Condition for general equation of second degree to represent a cone, Tangent plane to a cone and condition of tangency, Reciprocal cone, Cone with three mutually perpendicular generators, Number of mutually perpendicular generators, Intersection of a plane through the vertex and a cone.

PLANE SECTION AND CONICOIDS

(09 HOURS)

Some standard equation of central conicoids, Diametral planes and principal planes, Tangent lines and tangent plane at a point, Condition of tangency of a plane, Section with a given centre, Locus of the mid-points of a system of parallel chords, Polar plane, Polar lines, Enveloping cone, Classification of central conicoids, Normal to an ellipsoid, Conjugate diametral plane and diameters of ellipsoid, Paraboloids: Equation, Classification and Properties, Conicoids: General equation and examples.

Tutorials will be based on the coverage of the above topics separately.	(15 Hours)
(Total Contact Time: 45 Hours + 15 Hours= 60 Hours)	

3.	Tutorials will be based on
1	Distance, equation of surfaces, direction cosines, direction ratios and projection.
2	Equation of straight line, angles between two lines and intersection of three planes.
3	Equation of planes, equation of sphere and their intersection.
4	Equation of cylinder, equation of cone and mutually perpendicular generators.
5	Equation of cylinder, equation of cone and mutually perpendicular generators.
4.	Books Recommended:
1.	R. Ballabh, A Textbook of Coordinate Geometry, 3 ^{<i>rd</i>} Edition, Prakashan Kendra, Lucknow, 1965.
2.	S. Narayan and P. K. Mittal, Analytical Solid Geometry, 17 th Revised Edition,
	S.Chand & Company, New Delhi, 2007.
3.	R. J. T. Bell, An Elementary Treatise on Coordinate Geometry of Three Dimensions,
	MacMillon & Co. Ltd., 1960.
4.	C. Smith, An Elementary Treatise on Solid Geometry, MacMillon & Co. Ltd., 1931.
5.	P. K. Jain and K. Ahmad, A Text Book of Analytical Geometry of Three Dimensions, New
	Age International Publishers, New Delhi, 2005.

M.Sc. 2 rd Year (Mathematics) Semester – III DISCRETE MATHEMATICAL STRUCTURE	Scheme	L	Т	Р	Credit
MA 205		3	1	0	04

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	apply knowledge of Mathematical Logic in programming
CO2	analyze the problems for developing the solution, its correctness and performance using
	graphs
CO3	analyze the real world problems using group theory, relations, lattices and Boolean
	algebra
CO4	develop an algorithm using Asymptotic analysis
CO5	design solutions for various types of problems in different disciplines like information
	security, optimization, mathematical analysis

2.	Syllabus			
	MATHEMATICAL LOGIC AND PROGRAM VERIFICATION	(10 Hours)		
	Propositions, logical operators and propositional algebra, Predicates and quantifiers, Interaction of quantifiers with logical operators, Logical interference & proof techniques, Formal verification of computer programs (elements of Hoare logic).			
	GRAPH THEORY	(10 Hours)		
	Graphs, Definition and basic concepts of finite and infinite graph, Incidence and Degree, Isomorphism, Subgraph, Walk, Path & Circuits, Operations on graphs, Connected Graph, Disconnected graph and Components, Complete graph, Regular graph, Bipartite graph, Euler's graph, Hamiltonian paths and Circuits, Weighted graphs, Applications, Directed & Undirected graphs, Connectivity of graphs.			
	TREES	(06 Hours)		
	Definition & properties of trees, Pendent vertices in a tree, Distance between two vertices, Centre, Radius and diameter of a tree, Rooted and binary trees, Representation of Algebraic structure by Binary trees, Binary search trees, Spanning trees and fundamental circuits.			
	LATTICES	(06 Hours)		
	Definition and properties of lattice, Sublattice, Distributive and mod Complemented and bounded lattices, Complete lattices.	ular lattices,		

BOOLEAN ALGEBRA	(06 Hours)	
Introduction, Definition, Properties of Boolean algebra, Boolean variable expression, Boolean function, Min term, Max term, Canonical forms, Switch from Boolean expression, Karnaugh map method.	bles, Boolean bling network	
ASYMPTOTIC ANALYSIS	(07 Hours)	
Complexity analysis, Time and storage analysis, Big-oh, Big-Omega, Big-The Illustration and application to real problems.		
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)	

3.	Tutorials
1	Tutorial on Mathematical Logic and Verification
2	Tutorial on Graph Theory
3	Tutorial on Trees
4	Tutorial on Lattices
5	Tutorial on Boolean Algebra
6	Tutorial on Asymptotic Analysis

4.	Books Recommended:
1.	K. H. Rosen, Discrete Mathematics and its Applications, 6 th Edition, McGraw-Hill, 2006.
2.	B. Kolman, R. C. Busby, and S. Ross, Discrete Mathematical Structure, 5 th Edition, Prentice
	Hall Inc., 2003.
3.	J. P. Tremblay and R. Manohar, Discrete Mathematical Structure with Applications to
	Computer Science, McGraw Hill Book Co., 1999.
4.	N. Deo, Graph Theory with Applications to Engineering & Computer Science, Prentice Hall
	of India Pvt. Ltd., 2000.
5.	D. F. Stanat and D. F. McAllister, Discrete Mathematics in Computer Science, Prentice-
	Hall, Englewood Cliffs, New Jersey, 1977.

M.Sc. 2 rd Year (Mathematics) Semester – III DATA STRUCTURE	Scheme	L	Т	Р	Credit
MA 231		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	recognize the need of different data structures and understand its characteristics
CO2	apply different data structures for given problems
CO3	design and analyse different data structures, sorting and searching techniques
CO4	evaluate data structure operations theoretically and experimentally
CO5	solve the complex engineering problems

2.	Syllabus				
	INTRODUCTION TO DATA STRUCTURES	(03 Hours)			
	Review of Concepts: Information and meaning, Abstract data types, Internal of primitive data structures, Arrays, Strings, Structures, Pointers.				
	LINEAR LISTS	(06 Hours)			
	Sequential and linked representations of linear lists, Comparison of insertion, search operations for sequential and linked lists, Doubly linked lists, Circular Standard Template Library (STL), Applications of lists.				
	STACKS				
	Sequential and linked implementations, Representative applications such as Recur Expression evaluation viz., Infix, Prefix and Postfix, Parenthesis matching, Towe Hanoi, Wire routing in a circuit, Finding path in a maze.				
	QUEUES	(06 Hours)			
	Operations of queues, Circular Queue, Priority Queue, Dequeue, Application Simulation of time sharing operating systems, Continuous network monitorin	ns of queues, g system, etc.			
	SORTING AND SEARCHING	(05 Hours)			
	Sorting methods, Bubble sort, Selection sort, Quick sort, Radix sort, Buc Dictionaries, Hashing, Analysis of collision resolution techniques, Searching Linear search, Binary search, Character strings and different string operations.				

TREES	(08 Hours)			
Binary trees and their properties, Terminology, Sequential and linked implementations Tree traversal methods and algorithms, Complete Binary trees, General trees, AVL trees				
Threaded trees, Arithmetic expression evaluation, Infix-prefix-postfix notation conversion Heaps as priority queues, Heap implementation, Insertion and deletion operations, Heapson				
 Heaps in Huffman coding, Tournament trees, Bin packing.	(04 11			
MULTIWAY IRESS	(04 Hours)			
Issues in large dictionaries, M-way search trees, B-trees, Search, inser- operations, Height of B-tree, 2-3 trees, Sets and multisets in STL.	rt and delete			
GRAPHS	(07 Hours)			
Definition, Terminology, Directed and undirected graphs, Properties, Co graphs, Applications, Adjacency matrix and linked adjacency chains, Gra Breadth first and depth first traversal, Spanning trees, Shortest path and trans Activity networks, Topological Sort and critical paths.	onnectivity in aph traversal, sitive Closure,			
Practical will be based on the coverage of the above topics separately.	(30 Hours)			

3.	Practical's
1	Implementation of Array and its applications
2	Implementation of Stack and its applications
3	Implementation of Queue and its applications
4	Implementation of Link List and its applications
5	Implementation of Trees and its applications
6	Implementation of Graph and its applications
7	Implementation of Hashing functions and collision resolution techniques
8	Mini Project (Implementation using above Data Structure)

4.	Books Recommended:
1.	J. P. Trembley and P. G. Sorenson, An Introduction to Data Structures with Applications,
	2 nd Edition, Tata McGraw Hill Education, 1991.
2.	Y. Langsam, M. J. Augenstein and A. M. Tanenbaum, Data Structures using C and C++,
	2 nd Edition, Pearson Education India, 2007.
3.	E. Horowitz and S. Sahani, Fundamentals of Data Structures in C, 2 nd Edition, Silicon
	Press, 2007.
4.	T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, 3 rd Edition,
	MIT Press, 2009.
5.	R. L. Kruse, C. L. Tondo and B. Leung, Data Structures and Program Design in C, 2 nd
	Edition, Pearson Education, 2001.

M.Sc. 2 rd Year (Mathematics) Semester – III ENGLISH AND PROFESSIONAL	Scheme	L	Т	Р	Credit
COMMUNICATION-II HS201		3	1	0	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	express themselves using appropriate vocabulary and grammar
CO2	draft scientific reports and formal proposals
CO3	comprehend scientific and general content more skilfully and meaningfully
CO4	predict human transactions and behavioural modes
CO5	communicate effectively through various means and at varied levels

2.	Syllabus	
	FUNCTIONAL ENGLISH GRAMMAR	(08 Hours)
	Language functions, Modals, Tenses, Active and Passive Voice, Conditional senterrors.	ences, Concord
	TECHNICAL WRITING	(08 Hours)
	Formal and informal report- Information and recommendation reports, Progress report, Feasibility and trip report, Proposal writing- types, logistics of proposals, to of proposals persuasion and proposal, the structure of the proposal.	s and Periodic he deliverables
	LISTENING AND READING COMPREHENSION	(10 Hours)
	Listening and note taking, Paraphrasing, Reading using SQ3R, Predicting, Under reading and listening general and scientific texts and developing vocabulary.	erstanding Gist
	LANGUAGE THROUGH LITERATURE	(09 Hours)
	Short Stories:	
	1. The Remarkable Rocket by Oscar Wild.	
	2. An Astrologer's Day by R. K. Narayan.	
	3. The Case of the Lower-Case Letter by Jack Delany.	

GROUP COMMUNICATION & ACADEMIC WRITING	(10 Hours)
Transactional analysis; SOP; LOR; Research paper, Dissertation, Thesis; T communication- Seminar, Conferences, Convention, Symposium, Panel discussion	ypes of group on etc.
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)

3.	Tutorials
1	Language functions, Modals, Tenses, Active and Passive Voice
2	Conditional sentences, Concord errors.
3	Formal and informal report- Information and recommendation reports, Progress and Periodic report, Feasibility and trip report.
4	Feasibility and trip report, Proposal writing- types, logistics of proposals, the deliverables of proposals persuasion and proposal, the structure of the proposal.
5	Listening and note taking, Paraphrasing, Reading using SQ3R.
6	Predicting, Understanding Gist reading and listening general and scientific texts and developing vocabulary.
7	The Remarkable Rocket by Oscar Wild, An Astrologer's Day by R. K. Narayan, The Case of the Lower-Case Letter by Jack Delany.
8	SOP; LOR; Research paper, Dissertation, Thesis; Types of group communication- Seminar, Conferences, Convention, Symposium, Panel discussion etc.
4.	Books Recommended:
1	M. Markel, Practical Strategies for Technical Communication, 2nd Edition, Bedford/St. Martin's, 2016.
2	R. V. Lesikar and M. E. Flatley, Basic Business Communication Skills for Empowering the Internet Generation, Tata McGraw Hill Publishing Company Limited, New Delhi, 2005.
3	L. J. Gurak and J. M. Lannon, Strategies for Technical Communication in The Workplace, Pearson,
	2013.
4	C. L. Bovee, J. V. Thill and M. Chaturvedi, Business Communication Today, 9th Edition, Pearson,
	2009.
5	W. S. Pfeiffer and T. V. S. Padmaja, Technical Communication: A Practical Approach, 6th Edition, Pearson, 2013.

M.Sc. 2 rd Year (Mathematics) Semester – IV NUMERICAL ANALYSIS	Scheme	L	Т	Р	Credit
MA202		3	1	0	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	design an algorithm to solve a mathematical problem numerically
CO2	analyze an algorithm's accuracy, efficiency and convergence properties
CO3	develop a computer code for the designed algorithm
CO4	analyze classical techniques and recognize common pitfalls in numerical analysis
CO5	solve initial value problems using computational methods

2.	Syllabus	
	PRELIMINARIES OF COMPUTING	(03 Hours)
	Errors, Types of errors, Propagation of Error, Floating point arithmetic, Appro Taylor's series.	oximation using
	SOLUTION OF NONLINEAR EQUATIONS	(08 Hours)
	Bisection Method, Methods of false position, Newton's method, Modified Ner Fixed point iterative method, Newton's and fixed point iterative method nonlinear equations. Roots of polynomials, Error and convergence analysis of	wton's method, for system of these methods.
	SOLUTION OF SYSTEM OF LINEAR EQUATIONS	(08 Hours)
	Direct Methods: Gauss elimination with pivoting, LU decomposition met decomposition method, Error analysis for direct methods, Iterative methods Seidel method, SOR method, Vector and matrix norm, Convergence of iter Eigenvalue problems: Jacobi's and Power method.	thod, Cholesky : Jacobi, Gauss rative methods,
	INTERPOLATION	(12 Hours)
	Finite difference operators, Divided difference operators, Relation betw operators, Application of difference operators, Polynomial Interpolation, uniqueness of interpolating polynomials, Lagrange and Newton's interpola forward and backward difference formula, Error in interpolation.	een difference Existence and tion, Newton's
	DIFFERENTIATION AND INTEGRATION	(07 Hours)

Numerical differentiation: Methods based on interpolation and finite differences, Error in approximation, Order of approximation, Numerical Integration: Quadrature formula, Newton Cotes Methods, Trapezoidal and Simpson's rules with error analysis. Gauss quadrature methods with error analysis.

INITIAL VALUE PROBLEMS (ODE)

(07 Hours)

Picard's method, Taylor's series method, Euler and Runge-Kutta methods for initial value problems of order one and higher and system of first order ODEs with error analysis.

Practical will be based on the coverage of the above topics separately.

(15 Hours)

3.	Tutorials
1	Tutorial on nonlinear equations.
2	Tutorial on system of nonlinear equations.
3	Tutorial on system of linear equations using direct methods.
4	Tutorial on system of linear equations using indirect methods.
5	Tutorial on the eigenvalue of a matrix.
6	Tutorial on interpolating arbitrary spaced and equally spaced data.
7	Tutorial on approximate the derivative numerically.
8	Tutorial on integrate a function numerically.
9	To solve the initial value problems of order one and more and system of first order ODEs.
4.	Books Recommended:
1	K. E. Atkinson, An Introduction to Numerical Analysis, 2 nd Edition, John Wiley & Sons, 2008.
2	R. L. Burden and J. D. Faires, Numerical Analysis, 9th Edition, Cengage Learning, 2011.
3	S. D. Konte and C. de-Boor, Elementary Numerical Analysis: An Algorithmic Approach, 3 rd Edition, McGraw-Hill, 1981.
4	M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods: For Scientific and Engineering Computation, 6 th Edition, New Age International Publishers, 2014.
5	J. H. Mathews and K. D. Fink, Numerical Methods using MATLAB, 4 th Edition, Pearson India Education Services Pvt. Ltd., 2015.

M.Sc. 2 rd Year (Mathematics) Semester – IV Linear Algebra	Scheme	L	Т	Р	Credit
MA204		3	1	0	04

1.	Course Outcomes (COs):
CO1	evaluate the solution of system of linear equation through elimination and decomposition procedure
CO2	determine the basis and dimension of vector spaces and subspaces
CO3	discuss the matrix representation of a linear transformation given bases of the relevant vector spaces
CO4	adapt the knowledge of eigenvalues and eigenvectors for matrix diagonalization
CO5	interpret the applications of linear algebra and special matrices

2.	Syllabus	
	Matrices	(05 Hours)
	Properties of matrices, Non-singular Matrices, Reduced Row-Echelon form, C Solution of system of linear equations.	onsistency and
	Vector Spaces	(08 Hours)
	Fields, Vector spaces over a field, Subspaces, Linear Independence and Dependence Bases and Dimension.	e, Coordinates,
	LINEAR TRANSFORMATIONS	(08 Hours)
	Rank Nullity Theorem, Duality and transpose, Isomorphism, Matrix representation	
	of linear transformation, Change of basis, Similar matrices, Linear functional and	
	Dual Space.	
	INNER PRODUCT SPACES	(08 Hours)
	Cauchy-Schwarz's inequality, Gram-Schmidt orthonormalization, Orthonormal ba projection, Projection theorem, Fundamental subspaces and their relations.	sis, Orthogonal
	DIAGONALIZATION	(08 Hours)
	Eigenvalues and eigenvectors, Characteristic polynomials, Minimal polynomials, Ca theorem, Diagonalizability, Invariant subspaces, Adjoint of an operator, Normal, U	ayley-Hamilton nitary and Self-

Adjoint operators, Schur's lemma, Diagonalization of normal matrices, Triangularization, Rational canonical form, Jordon canonical fom.

SOME APPLICATIONS

(08 HOURS)

Lagrange interpolation, QR and SVD decompositions, Least square solutions, Least square fittings, Pseudo-inverses, Rayleigh quotients, Special matrices and their properties.

Tutorials will be based on the coverage of the above topics separately.

(15 Hours)

3.	Tutorials
1	Tutorial on matrices and system of equations.
2	Tutorial on fields, subspaces, basis and dimension.
3	Tutorial on linear transformations, gram Schmidt orthonormalization and projection theorem.
4	Tutorial on eigen values, eigen vectors, characteristic polynomials and canonical form.
5	Tutorial on Lagrange interpolation, QR and SVD decomposition, pseudo inverses and special matrices.

4.	Books Recommended:
1	K. Hoffman and R. Kunze, Linear Algebra, PHI Publication, 2015.
2	G. Strang, Linear Algebra and its Applications, 4 th edition, Cengage Learning, 2007.
3	S. Lang, Linear Algebra: Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1989.
4	G. William, Linear Algebra with Applications, 6 th Revised Edition, Jones and Bartlett Publishers Inc., 2007.
5	G. William, Linear Algebra with Applications, 6 th Revised Edition, Jones and Bartlett Publishers Inc., 2007.

M.Sc. 2 rd Year (Mathematics) Semester – IV ELEMENTARY NUMBER THEORY	Scheme	L	Т	Р	Credit
MA232		3	1	0	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	explain congruence relations and number theoretic functions
CO2	demonstrate Fermat's theorem and its applications
CO3	solve Diophantine equations
CO4	elaborate primitive roots and quadratic reciprocity
CO5	adapt the knowledge of various techniques in cryptography

2.	<u>Syllabus</u>	
	INTRODUCTION	(07 Hours)
	Divisibility, Greatest Common Divisor (gcd), Euclidean Algorithm, Primes and the properties, Fundamental theorem of Arithmetic.	eir elementary
	CONGRUENCE RELATION	(08 Hours)
	Congruence and their Basic properties, Chinese Remainder Theorem, Euler's Fermat's Little Theorem, Wilson's Theorem, Euler's theorem.	phi-function,
	NUMBER THEORETIC FUNCTIONS	(12 Hours)
	Greatest integer function, Arithmetic functions, Mobius inversion formula, Fibona Representation of an integer as sum of two and four squares, Diophantine Equation c, $x^2 + y^2 = z^2$ and $x^4 + y^4 = z^4$.	acci numbers, ns: ax + by =
	PRIMITIVE ROOTS, INDICES AND RESIDUES	(12 Hours)
	Order of an integer modulo n, Primitive roots for primes, Theory of indices, Residu Residued residue classes, Quadratic residues, Legendre symbol, Gauss's Lemma ab symbol, Law of quadratic reciprocity, Jacobi symbol.	ue classes and bout Legendre
	INTRODUCTION TO CRYPTOGRAPHY	(06Hours)
	Basic definitions of plaintext, ciphertext, cipher, enciphering (encrypting), (decrypting), The Caesar cipher, Monoalphabetic and Poly alphabetic ciphers, N	deciphering Nonalphabetic

ciphers, Exponential cryptosystem, Applications of Euler's theorem in cryptography, Introduction to public-key cryptography and RSA cryptosystems.

Tutorials will be based on the coverage of the above topics separately.

(15 Hours)

3.	Tutorials
1	Tutorial on divisibility, gcd, Euclidean Algorithm.
2	Tutorial on primes and their elementary properties, fundamental theorem of Arithmetic.
3	Tutorial on congruence relation
4	Tutorial on number theoretic functions.
5	Tutorial on diophantine equations.
6	Tutorial On Primitive roots, indices and residues.
7	Tutorial on The Caesar cipher, Monoalphabetic and Poly alphabetic ciphers, Nonalphabetic ciphers, Exponential cryptosystem.
8	Tutorial on exponential cryptosystem, applications of Euler's theorem in cryptography.
9	Tutorial on public-key cryptography and RSA cryptosystems.

4.	Books Recommended:
1	K. E. Atkinson, An Introduction to Numerical Analysis, 2 nd Edition, John Wiley & Sons, 2008.
2	R. L. Burden and J. D. Faires, Numerical Analysis, 9th Edition, Cengage Learning, 2011.
3	S. D. Konte and C. de-Boor, Elementary Numerical Analysis: An Algorithmic Approach, 3 rd
	Edition, McGraw-Hill, 1981.
4	M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods: For Scientific and Engineering
	Computation, 6 th Edition, New Age International Publishers, 2014.
5	J. H. Mathews and K. D. Fink, Numerical Methods using MATLAB, 4 th Edition, Pearson India
	Education Services Pvt. Ltd., 2015.

M.Sc. 2rd Year (Mathematics) Semester – IV Computational Life Science	Scheme	L	Т	Р	Credit
MA233		3	1	0	04

1.	Course Outcomes (COs): At the end of the course, the students will be able to
CO1	exhibit enhanced knowledge of evolution theory
CO2	assess biological inferences that depend on population genetics
CO3	demonstrate knowledge of biological systems ,microbial population and epidemics
CO4	utilize the concepts of Mathematical modeling like evolutionary games theory, statistics,
	numerical methods etc. in Biology
CO5	apply biological mechanisms of evolution, epidemics, genetics etc in invasion analysis
	and technology

2	Syllabus	
	THEORY OF EVOLUTION	(08 Hours)
	Evolution of life: Origin of Life, Structure and types of cell, Cel	l organelles,
	Biomolecules of cell, Molecular Sequences: Nucleotide and protein	n, Sequence
	comparisons: Dynamic programming, Phylogenetic Analysis	_
	POPULATION GENETICS	(07 Hours)
	Mendelian genetics, Inheritance models, probability distributions in	
	genetics, Linkage, Selection and Mutation	
	DIFFUSION IN BIOLOGICAL SYSTEMS	(07 Hours)
	Diffusion in biology: Constructing diffusion models, Biomass Reacti	on diffusion
	models, Bioheat Transfer models	
	MICROBIAL POPULATION MODELS	(08 Hours)
	Introduction to Microbiology, Microbial taxonomy: Microbial kinetic	s, Microbial
	growth in a Chemostat, Growth of microbial populations, stability,	competition,
	Commensalism, Mutualism, Predation and mutation	
	EPIDEMIC MODELS	(08 Hours)
	Deterministic epidemic models, epidemic control, Stochastic epidemic	nic models,
	Epidemic Networks: Spread of disease in contact networks	
	EVOLUTIONARY INVASION ANALYSIS	(07 Hours)
	Evolutionary Invasion Analysis: Introduction to Game Theory, Evoluti	onary games
	theory, Concept of evolutionary stability, Adaptive dynamics, invasion an	alysis.
]	Futorials will be based on the coverage of the above topics separately	(15 Hours)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Mathematics

Five Years Integrated	M.Sc.	Mathematics
------------------------------	-------	-------------

3.	Tutorials
1	Sequence Analysis, dynamic programming and Phylogenetic analysis
2	Probability distributions in genetics, models of Inheritance
3	Reaction Diffusion models in biology, Bioheat transfer models
4	Growth of microbial populations, stability, equilibrium, competition
5	Epidemic models under various conditions, Spread of disease in contact networks,
6	Games theory, evolutionary games theory ,stability ,equilibrium, Invasion analysis

4.	Books Recommended:
1	A. R. Leach, Molecular Modelling: Principles and Applications, Addison-Wesley Pub.
	Co., 1997.
2	Elizabeth S. Allman and John A. Rhodes, Mathematical Models in Biology-An
	Introduction, Cambridge University Press, 2004
3	N. Hopkins, J. W. Roberts, J. A. Steitz, J. Watson and A. M. Weiner, Molecular Biology
	of the Gene, 7th Edition, Benjamin Cummings, 1987.
4	J.N. Kapur, Mathematical Models in Biology and Medicine, Affiliated East West Press
	Pvt. Ltd, 1985.
5	C. C. Chatterjee, Human Physiology, 13th revised Edition, Vol 1 & 2, CBS Publisher,
	2020.

5.	Additional Reference Book:
1	B. K. Hall, Evolution, Principles and Processes, Jones & Bartlett, 2011.
2	O. A. Hougen, K. M. Watson and R. A. Ragatz, Chemical Process Principles Part-I:
	Material and Energy Balances, CBS Publishers New Delhi, 2nd Edition, 2004.
3	D. Baxevanis, and B. F. F. Ouellette, Bioinformatics – A Practical Guide to the Analysis
	of Genes and Proteins, 2nd Edition, John Wiley and Sons Inc., 2001.
4	B. Bernd, K. Juergen, S. Lewi, Complex Population Dynamics: Nonlinear Modeling in
	Ecology, Epidemiology And Genetics, World Scientific Publishing Co. Pvt. Ltd., 2007.

M.Sc. 2 rd Year (Mathematics) Semester – IV Computer Network	Scheme	L	Т	Р	Credit
CS208		3	0	2	04

1.	Course Outcomes (COs):
CO1	understand computer network models and services offered at different layers of network protocol stack.
CO2	apply knowledge of data communication, data transmission techniques using various transmission media to deliver error free data and communicate with multiple nodes.
CO3	analyse various routing methods to identify effective routing protocols.
CO4	evaluate network performance by means of transport and flow control protocols, Congestion Control protocols and Quality of services.
CO5	create a computer network application using modern network tools and simulation software.

2.	<u>Syllabus</u>	
	Introduction	(07 Hours)
	Overview of computer networks and data communication, Computer networks and standards, Types of computer networks, Network topology, Protocol design issues, Interfaces and services, Networking devices, OSI and TC models.	rking protocols hierarchies and CP/IP reference
	PHYSICAL LAYER	(07 Hours)
	Physical layer design issues, Data transmission techniques, Multiplexing media, Asynchronous communication, Wireless transmission, ISDN, ATM, Switching techniques and issues.	, Transmission Cellular radio,
	MEDIUM ACCESS CONTROL LAYER	(08 Hours)
	MAC layer design issues, Channel allocation methods, Multiple access prot CSMA, CSMA/CD protocols, Collision free protocols, Limited contention I Architectures, IEEE -802 standards, Ethernet(CSMA/CD), Token bus, Toke FDDI, Bridges and recent developments.	ocols ALOHA, Protocols, LAN en ring, DQDB,
	NETWORK LAYER	(07 Hours)

Network layer design issues, Routing algorithms and protocols, Congestion control algorithms and QoS, Internetworking, Addressing, N/W layer protocols and recent developments.

TRANSPORT LAYER

Transport layer design issues, Transport services, Sockets, Addressing, Connection establishment, Connection release, Flow control and buffering, Multiplexing, Transport layer protocols, Real Time Transport Protocol (RTP), Stream Control Transmission Protocol (SCTP), Congestion control, QoS and Recent developments, Virtualization, Network Functions Virtualization(NFV), Software defined networks.

APPLICATION LAYER

(08 Hours)

Client server model, Domain Name System (DNS), Hyper Text Transfer Protocol (HTTP), Email: SMTP, MIME, POP3, Webmail, FTP, TELNET, Dynamic Host Control Protocol (DHCP), Simple Network Management Protocol (SNMP) and recent developments.

Tutorials will be based on the coverage of the above topics separately.

(30 Hours)

(Total Contact Time: 45 Hours + 30Hours= 75 Hours)

3.	Practical
1	Study network configuration commands and computer network setup.
2	Implementation of different Data Link and MAC Layer protocols.
3	Implementation of different Network Layer protocols.
4	Implementation of different Transport and Application Layer protocols.
5	Design and configure a network systems using modern network simulator software's.
6	Implementation of Secured Socket Layer protocol.
7	Implementation of ICMP based message transmission over network.
8	Implementation of SMTP protocol for mail transfer.

(08 Hours)

4.	Books Recommended:
1	W. Stalling, Data and Computer Communication, 10 th Edition, Pearson India, 2017.
2	B. Forouzan, Data Communication and Networking, 5 th Edition, McGraw Hill, 2017.
3	D. E. Comer, Internet working with TCP/IP Volume – I, 6^{th} Edition, Pearson India, 2015.
4	A. S. Tanenbaum, Computer Network, 5 th Edition, Pearson India, 2013.
5	W. R. Stevens, TCP/IP Illustrated Volume - I, 2 nd Edition, Addison Wesley, 2011.