SCHEME AND SYLLABUS

	CS: Core Subje	ct					EIS	: Elective	e Intere	lisciplin	ary Sub	ject	
	ES: Elective Su	bject (fron	n Departm	· · · ·			IS:	Interdisc	iplinar	y Subjec	t		
				Teac	hing S	cheme		nination S	Scheme				
Sr.	Course	Code	Credits	Hour	s per V	Veek	Theo	ry			Practic	cals	Total
No.	Course	code	creatis	L	Tu	Pr	Hr	Sess ional	Tu	End Sem	Sess ional	End Sem	Marks
1	Chemical Engineering Thermodynamics-I (CS-1)	CH 301	4	3	1	0	2	50	25	50			125
2	Heat Transfer Operations (CS-2)	CH 303	5	3	1	2	2	50	25	50	20	30	175
3	Mass Transfer Operations-I (CS-3)	CH 305	5	3	1	2	2	50	25	50	20	30	175
4	Mechanical Operations (CS-4)	CH 307	5	3	1	2	2	50	25	50	20	30	175
5	EIS-1*		3	3	0	0	2	50		50			100
	TOTAL		22	15	4	6		250	100	250	60	90	750
Tota	l contact hours per wee	ek = 25	•	Tota	al Cre	dit = 22				r	Fotal m	arks = 7	50

B.TECH.-III (CHEMICAL) 5th SEMESTER SCHEME FOR TEACHING AND EXAMINATION

B.TECH.-III (CHEMICAL) 6th SEMESTER SCHEME FOR TEACHING AND EXAMINATION

Sr.				Teac Sche	me			nation So	cheme		T		Total
No.	Course	Code	Credits	Hour	s per V	per Week Theory		Practica	Practicals				
110.				L	Tu	Pr	Hr	Sess ional	Tu	End Sem	Sess ional	End Sem	Marks
1	Chemical Engineering Thermodynamics-II (CS-1)	CH 302	4	3	1	0	2	50	25	50			125
2	Chemical Reaction Engineering -I (CS-2)	CH 304	5	3	1	2	2	50	25	50	20	30	175
3	Fluid Flow Operations (CS-3)	CH 306	5	3	1	2	2	50	25	50	20	30	175
4	Mass Transfer Operations-II (CS-4)	CH 308	5	3	1	2	2	50	25	50	20	30	175
5	EIS-2*		3	3	0	0	2	50		50			100
	TOTAL		22	15	4	6		250	100	250	60	90	750
Total contact hours per week = 25Total Credit = 22						Tot	al marks	= 750					

* Students have to	opt for one subj	ect from each	Elective	Interdisciplinary	V Subject Grou	up-1 & 2 as listed below:	:
			4			#	1

Students have to opt for one subject from each Elective Interdisciplinary Subject Oroup-1 & 2 as instea bei						
EIS: Elective Interdisciplinary Subjects (Group-1) [#]	EIS: Elective Interdisciplinary Subjects (Group-2) [#]					
CH 309: Bioprocess Engineering	CH 312: Bioseparations					
CH 311: Energy Technology	CH 314: Cleaner Technologies in Chemical Process					
CH 313: Fertilizer Technology	Industries					
CH 315: Fuels and Combustion	CH 316: Introduction to Industrial Biotechnology					
CH 317: Polymer Science and Engineering	CH 318 Petrochemical Technology					
	CH 322: Petroleum Refinery Engineering					

CH 301: CHEMICAL ENGINEERING THERMODYNAMICS - I

INTRODUCTION

Conservation of energy and first law of thermodynamics, application to steady state flow process. enthalpy, internal energy, equilibrium state, phase rule, reversible and irreversible processes, heat capacity specific heat.

PROPERTIES OF PURE SUBSTANCES

P-V-T behavior, ideal and non-ideal gases, different equations of state for real gases.

HEAT EFFECTS

Heat capacities of gases as a function of temperature of liquids and solids, heat of vaporization, heat of fusion, heat of sublimation, etc.

SECOND AND THIRD LAW OF THERMODYNAMICS

Thermodynamic temperature scale, ideal gas temperature scale, concept of entropy, entropy change and irreversibility, third law of thermodynamics.

THERMODYNAMIC PROPERTIES OF FLUID

Mathematical relation among thermodynamic functions, Mexwell's relations, Interrelation between H, S, U, G, Cp, Cv, properties of single and two phase system. Types of thermodynamic diagrams.

THERMODYNAMICS OF FLOW PROCESS

Fundamental relation for flow in pipes, maximum velocity in pipe flow, throttling process, flow through nozzles, single stage and multi stage compressors.

REFRIGERATION AND LIQUEFACTION:

Carnot refrigeration cycle, air refrigeration cycle, absorption refrigeration, heat pump, choice of refrigeration, liquefaction processes.

(Total contact time: 45 hours)

BOOKS RECOMMENDED:

1. Smith J. M., Van Ness H. C., M.M. Abbott, "Introduction to Chemical Engineering Thermodynamics", 6th Ed., McGraw-Hill, New York, 2001

2. Dodge B. F., "Chemical Engineering Thermodynamics", McGraw-Hill Book Co., New York, 1960.

3. Rao Y. V. C., "Chemical Engineering Thermodynamics", Universities Press Limited, Heydrabad, 1997.

4. Kyle, B.G., "Chemical and Process Thermodynamics", 2nd Ed., Prentice-Hall of India, New Delhi, 1990.

5. Sandler, S.I., "Chemical and Engineering Thermodynamics", 2nd Ed., Wiley, New York, 1989.

(6 Hours)

(8 Hours)

(5 Hours)

(6 Hours)

(5 Hours)

B.Tech. III (CH), Semester-V

4

С

Р

0

L

3

Т

1

(8 Hours)

(7 Hours)

Tech. III (CH), Semester – V	L	т	Ρ	С
H 303: HEAT TRANSFER OPERATIONS	3	1	2	5
INTRODUCTION Modes of Uset Transferr Conduction Convection	nd Dadiation			(02 Hours)
 Modes of Heat Transfer: Conduction, Convection a CONDUCTION Fourier conduction equation, General conduction e ordinates, Steady state and transient conduction equ 	quation in Cartes	ian, Cyli		(05 Hours) nd Spherical co
• FORCED CONVECTION Heat transfer in fluids without phase change, Force in laminar and turbulent flows inside and outside t	ed convection, D		al analys	
heat transfer coefficient, LMTD, Fouling factors,	, Transfer units,			
	, Transfer units,		ver flat	plates with he
heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations.		Flow o	ver flat	plates with he (04 Hours)
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION 	ear transfer correl	Flow o ations fo	ver flat r free con	plates with he (04 Hours) nvection. (04 Hours)
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION Boiling phenomena: Regimes of boiling etc, Condet	ear transfer correl	Flow o ations fo	ver flat r free con ndensatio	(04 Hours) (04 Hours) (04 Hours) (04 Hours) on etc.
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION Boiling phenomena: Regimes of boiling etc, Condet EVAPORATION AND CRYSTALIZATION 	ear transfer correl	Flow o ations fo drop co	ver flat r free con ndensatio	plates with he (04 Hours) nvection. (04 Hours)
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION Boiling phenomena: Regimes of boiling etc, Conde EVAPORATION AND CRYSTALIZATION Single effect and Multi-effect evaporation, Forward	ear transfer correl nsation: Film and l and backward fe	Flow o ations fo drop co	ver flat r free con ndensatio	(04 Hours) (04 Hours) (04 Hours) (04 Hours) on etc.
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION Boiling phenomena: Regimes of boiling etc, Conde EVAPORATION AND CRYSTALIZATION Single effect and Multi-effect evaporation, Forward Equilibrium in crystallization, operation and equipment 	ear transfer correl nsation: Film and l and backward fe	Flow o ations fo drop co	ver flat r free con ndensatio m.	(04 Hours) nvection. (04 Hours) on etc. (06 Hours)
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION Boiling phenomena: Regimes of boiling etc, Conde EVAPORATION AND CRYSTALIZATION Single effect and Multi-effect evaporation, Forward Equilibrium in crystallization, operation and equipn HEAT EXCHANGERS 	ear transfer correl nsation: Film and l and backward fe nent.	Flow o ations fo drop co red system	ver flat r free con ndensatio m.	(04 Hours) nvection. (04 Hours) (04 Hours) on etc. (06 Hours) (06 Hours)
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION Boiling phenomena: Regimes of boiling etc, Conde EVAPORATION AND CRYSTALIZATION Single effect and Multi-effect evaporation, Forward Equilibrium in crystallization, operation and equipn HEAT EXCHANGERS Double pipe heat exchanger and Shell-and-tube heat 	ear transfer correl nsation: Film and l and backward fe nent.	Flow o ations fo drop co red system	ver flat r free con ndensatio m. ns and do	(04 Hours) nvection. (04 Hours) on etc. (06 Hours) (06 Hours) esign
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION Boiling phenomena: Regimes of boiling etc, Conde EVAPORATION AND CRYSTALIZATION Single effect and Multi-effect evaporation, Forward Equilibrium in crystallization, operation and equipn HEAT EXCHANGERS Double pipe heat exchanger and Shell-and-tube hea RADIATION HEAT TRANSFER 	ear transfer correl nsation: Film and l and backward fe nent. t exchanger, its a	Flow o ations fo drop co ed system pplicatio	ver flat r free con ndensatio m. ns and do	(04 Hours) nvection. (04 Hours) on etc. (06 Hours) (06 Hours) esign (04 Hours)
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION Boiling phenomena: Regimes of boiling etc, Conde EVAPORATION AND CRYSTALIZATION Single effect and Multi-effect evaporation, Forward Equilibrium in crystallization, operation and equipn HEAT EXCHANGERS Double pipe heat exchanger and Shell-and-tube heat 	ear transfer correl nsation: Film and l and backward fe nent. t exchanger, its a	Flow o ations fo drop co ed system pplicatio	ver flat r free con ndensatio m. ns and do	(04 Hours) nvection. (04 Hours) on etc. (06 Hours) (06 Hours) esign (04 Hours)
 heat transfer coefficient, LMTD, Fouling factors, transfer, Empirical correlations. NATURAL CONVECTION Qualitative description of free convection flows, He BOILING AND CONDENSATION Boiling phenomena: Regimes of boiling etc, Condet EVAPORATION AND CRYSTALIZATION Single effect and Multi-effect evaporation, Forward Equilibrium in crystallization, operation and equipn HEAT EXCHANGERS Double pipe heat exchanger and Shell-and-tube hea RADIATION HEAT TRANSFER Basic concepts of radiation heat transfer, Radiative	ear transfer correl nsation: Film and l and backward fe nent. t exchanger, its a heat exchange be	Flow o ations fo drop co ed system pplicatio	ver flat r free con ndensatio m. ns and do	(04 Hours) nvection. (04 Hours) on etc. (06 Hours) (06 Hours) esign (04 Hours) cadiation shield

PRACTICALS:

1. Experiment on "Heat transfer through composite wall at different temperature"

- 2. Experiment on "Thermal conductivity of insulating powder (Asbestos powder)
- 3. Experiment on "Heat transfer in double pipe heat exchanger in laminar flow"
- 4. Experiment on "Heat transfer in turbulent flow"
- 5. Experiment on "Heat transfer by forced convection"
- 6. Experiment on "Heat transfer coefficient in natural convection"
- 7. Experiment on "Extended surface heat transfer"
- 8. Experiment on "Shell and tube heat exchanger"
- 9. Experiment on "Heat transfer by radiation: Stefan-Boltzmann Law"

BOOKS RECOMMENDED:

1. McCabe W.L., Smith J.C., Harrott P., "Unit Operations of Chemical Engineering", 6th & 7th Eds. McGraw-Hill, New York, 2001 & 2005.

2. Kern D. Q., "Process Heat Transfer", McGraw-Hill, New York, 1950.

3. Hollman J. P., "Heat Transfer - Basic approach", McGraw-Hill, New York, 1985.

4. Gebhart B. U., "Heat Transfer", Tata McGraw-Hill, New York, 1961.

Coulson J.M., Richardson J.F., Backhurst J. R., Harker J.H. "Chemical Engineering" Vol. 1. 6th Ed. Elservier, New Delhi, 2004.

H 305: N	AASS TRANSFER OPERATIONS-I	3	1	2	5
•	INTRODUCTION			(02]	Hours)
	Introduction to Mass Transfer Operation: classification	& method	1.		
•	DIFFUSION AND MASS TRANSFER			(08)	Hours)
	Molecular diffusion in fluids, steady state diffusion				
	(both gases & liquids), diffusivity of liquids & gases.				
•	MASS TRANFER COEFFICIENTS			(03]	Hours)
	Mass Transfer co-efficient in laminar & turbulent flow,				,
	Mass, Heat and Momentum transfer analogies				
•	DIFFUSION IN SOLIDS			(06)	Hours)
	Introduction to diffusion in solids, Fick's law, types of s	olid diffu	ision		,
•	INTER PHASE MASS TRANSFER			(04]	Hours)
	Equilibrium, diffusion between phases, material balance	e, stages		× ×	,
•	DISTILLATION			(16)	Hours)
	VLE data, flash, differential and continuous distillation,				
	McCabe-Thiele and Ponchon-Savarit method, Azeotrop	ic,			
	Extractive, Reactive, Molecular and Multicomponent di	stillation,	,		
	Equipment for gas-liquid operation				
•	HUMIDIFICATION			(06]	Hours)
	Vapor-gas mixtures, vapor-liquid equilibrium,gas-liquid adiabatic & non-adiabatic operations.	l contact	operation		
	1	(Total c	ontact ti	ime: 45 l	hours)

- 2. Mass transfer coefficient
- 3. Crystallization
- 4. Azeotropic distillation
- 5. Diffusion coefficient
- 6. Latent heat of vaporization
- 7. Cooling tower
- 8. Packed distillation

BOOKS RECOMMENDED:

 Treybal R.E., "Mass-Transfer Operations", 3rd Ed., McGraw-Hill, New York, 1981.
 McCabe W.L, Smith J.C., Harriott P., "Unit Operations in Chemical Engineering", 6th & 7th Eds., McGraw-Hill, New York, 2001 & 2005.

3. Coulson J.M., Richardson J.F., Backhurst J. R., Harker J.H. "Chemical Engineering" Vol. 1. 6th Ed. Elservier, New Delhi, 2004.

 Sherwood, T.K., Pigford, R.L., Wilke, C.R., "Mass Transfer", McGraw-Hill, New York, 1976.
 Cussler E.L., "Diffusion: Mass Transfer in Fluid Systems", 2nd Ed., Cambridge University Press, Cambridge, 1997.

CH 307: MECHANICAL OPERATIONS 3 1 2 5 **INTRODUCTION** (03 Hours)

SIZE REDUCTION

Size reduction and enlargement, crushers, grinders, disintegrates for coarse & intermediate & fine grinding, energy and power requirements, law of crushers, work index, etc.

L

Т

Р

SCREENING AND OTHER SEPARATION METHODS

Screening and other separation methods: screen analysis, estimation of particle size, surface area and particle population based on screen analysis, ideal and actual screens, principles of elutriation, flotation, jigging, electrostatics, and magnetic separation processes, Cyclones, Hydroclones, Centrifugal Decanter.

SEDIMENTATION

Sedimentation, Settling velocity, flocculation, Thickener, Sedimentation zones.

FILTRATION •

Filtration, filter media, filter aids, batch & cont. filtration, filtration equipment, filter press, leaf, cartridge, vacuum filter, rotary drum filters.

MIXING AND AGITATION •

Equipments for agitation, agitation of liquids, types of impellers, power consumption in agitated vessels etc.

CONVEYERS

Mechanical and Pneumatic conveying, elevators, Bins, silos etc.

PRACTICALS:

- 1. Determination of particle size by sieve analysis.
- 2. Determination of the optimum speed and critical speed of a ball mill.
- 3. Measurement of different bulk properties of powder samples.
- 4. To study powder compaction behavior using different powder compaction models.
- 5. Study of particle size reduction by Roll crusher and Jaw crusher
- 6. Characterization of powder flowability by Angle of Repose.
- 7. Obtaining the collection efficiency of cyclone
- 8. Obtaining settling rates of slurry as function of solid concentration
- 9. Study of pressure drop as function of superficial velocity

10. To characterize particle size and shape using image processing by ImageJ software.

BOOKS RECOMMENDED:

1. McCabe W.L., Smith J.C., Harriott P., 'Unit Operations of Chemical Engineering", 6th & 7th Eds., McGraw-Hill, New York, 2001 & 2005.

2. Foust A.S., Wenzel L.A., Clump C.W., Maus L., Anderson L.B. "Principles of Unit Operations", John Wiley & Sons, New York, 1980.

3. Brown G.G., "Unit Operations", John Wiley & Sons, New York, 1953.

- 4. Badger W.L., Banchero J.T., "Introduction to Chemical Engineering", McGraw Hill, New York, 1997.
- 5. Coulson J.M., Richardson J.F., "Chemical Engineering", Vol. 2, 5th Ed., Elservier, New Delhi, 2002.

Solids, Storage, Transportation and Handling of Solis, Liquid and Gases, characteristics of solid particles

(05 Hours)

С

(10 Hours)

(05 Hours)

(10 Hours)

(03Hours)

(Total contact time: 45 hours)

(09 Hours)

B. Tech. III (CH), Semester - V

B.Tech. III (CH), Semester-VI

CH 302: CHEMICAL ENGINEERING THERMODYNAMICS - II

THERMODYNAMIC PROPERTIES OF FLUIDS •

Partial molar properties, chemical potential, non-ideal solution, fugacity, and fugacity co- efficient, for pure components and for mixture of gases, and for liquids. Lewis randall rule, Henry's law, excess property, activity and activity co-efficient.

PHASE EOUILIBRIUM

Phase rule, Duhem theory, miscible system, immiscible system, partially immiscible system, testing of vapor-liquid equilibrium data, Gibbs-Duhem equation, Van Laar equation. Margules equation, Redlich-Kister equation, P-X-Y, T-X-Y, & X-Y Diagram, vapor-liquid equilibrium of ideal and nonideal solution, Roult's law & Henry's law.

CHEMICAL EQUILIBRIUM

Criteria, equilibrium conversion (X), constant (K), effect of Temp. & Pressure on K, evaluation of K, evaluation of equilibrium conversion for gas phase reaction.

- INTRODUCTION TO STATISTICAL THERMODYNAMICS (8Hours) Stefen-Boltzman, Bose-Einstein and Fermi-Dirac distributions, corrected boltzman statistics, partition function etc.
 - (Total contact time: 45 hours)

BOOKS RECOMMENDED:

1. Smith J. M. Van Ness H. C., Abbott M.M., "Introduction to Chemical Engineering Thermodynamics", 6th & 7th Eds., McGraw-Hill, New York, 2001 & 2005.

2. Dodge B. F., "Chemical Engineering Thermodynamics", McGraw-Hill, New York, 1960.

3. Rao Y. V. C., "Chemical Engineering Thermodynamics", Universities Press Limited, Heydrabad, 1997.

4. Sonntag R.E., Van Wylen G.J., "Fundamentals of Statistical Thermodynamics", John Wiley & Sons, Singapore, 1991.

5. Sandler, S.I., "Chemical and Engineering Thermodynamics", 2nd Ed., Wiley, New York, 1989.

(12 Hours)

(15 Hours)

(10 Hours)

3 1 0 4

Р С

Т

L

B. Tech. III (CH), Semester-VI	L	Т	Р	С			
CH 304: CHEMICAL REACTION ENGINEERING - I	3	1	2	5			
 INTRODUCTION (01 Hour) Chemical kinetics, Classification of reactions, Variables affecting the rate of reaction, Reaction rate KINETICS OF HOMOGENEOUS REACTIONS (06 Hours) Concentration dependent term and temperature dependent terms of rate equation, Single and multiple reactions, Elementary and non-elementary reactions, Molecularity and order of reaction, Rate constant, Representation of reaction rate, Kinetic models, Temperature dependency from Arrhenius' law, thermodynamics, various theories, Activation energy, Searching for the reaction mechanism INTERPRETATION OF BATCH REACTOR DATA (08 Hours) 							
 Constant volume batch reactor, Variable volume batch reactor, In method of analysis of kinetic data, Temperature and reaction rate INTRODUCTION TO REACTOR DESIGN Types of reactors, PFR, CSTR etc., Material & energy balances single space-velocity, Holding time, Introduction of non-ideal flow DESIGN FOR SINGLE REACTIONS 	e idea	l reacto	((or, Spac (0	3 Hours) te-time and 8 Hours)			
• DESIGN FOR MULTIPLE REACTIONS SYSTEMS			(0	8 Hours)			
 Reaction in parallel, Reaction in series, Series-parallel reaction and app TEMPERATURE & PRESSURE EFFECTS Single & multiple reactions, Heats of reaction from thermodynamics, P INDUSTRIAL APPLICATIONS Types of reactors used in industries, Advanced chemical reactors. 			ition)4 Hours))4 Hours)			
 INTRODUCTION TO BIOCHEMICAL REACTION ENGINEER Types of bio-reactors, Design, scale-up, operation and control of bio-re reactions 	eactors		ics of b	03 Hours) iochemical : 45 hours)			

PRACTICALS:

- 1. Integral method of analysis of kinetic data
- 2. Differential method of analysis of kinetic data
- 3. Activation energy and frequency factor
- 4. Half-life method
- 5. Pseudo first order reaction
- 6. Study of kinetics of the reaction in presence of DC current
- 7. Study of membrane reactor
- 8. Study of spiral coiled reactor
- 9. Study of annulus flow reactor
- 10. Study of specific reaction/reactor system

BOOKS RECOMMENDED:

- Levenspiel O., "Chemical Reaction Engineering", 3rd Ed., John Wiley & Sons, Singapore, 1998.
 Fogler H.S., "Elements of Chemical Reaction Engineering", 4th Ed., Prentice-Hall, NJ, 2006.
 Smith J. M., "Chemical Engineering Kinetics", 3rd Ed., McGraw-Hill, New York, 1981.

4. Froment G.F., Bischoff K.B., "Chemical Reactor Analysis and Design", 2nd Ed., John Wiley & Sons, Singapore, 1990.

5. Inamdar S.T.A., "Biochemical Engineering – Principles and Concepts", Prentice-Hall of India, New Delhi, 2007.

6. Shuler M.L., Kargi F., "Bioprocess Engineering – Basic Concepts", 2nd Ed., Prentice-Hall of India, New Delhi, 2006.

B. Tech. III (CH), Semester -VI L Т С Р **CH 306: FLUID FLOW OPERATIONS** 3 5 1 2

INTRODUCTION

Definitions of Unit operations, Basic concepts of fluids and its application area, Properties of fluids, Unit systems, Standards, Conversion on units, Units and equations, Dimension analysis, Dimension and units, Dimensional homogeneity, Dimensionless equations, Buckingham π theorem, Common π groups, examples.

FLUID STATIC & ITS APPLICATIONS

Nature of fluids: Incompressible and compressible fluids. Pressure concepts, Hydrostatic equilibrium in gravitational and centrifugal field, Manometers, Inclined manometer, Continuous gravity and centrifugal decanter.

FLUID FLOW PHENOMENA

Types of flow, Potential flow, One dimensional flow, Laminar flow, Reynolds number, Newtonian and non-Newtonian fluids, Velocity gradient and Rate of shear, Viscosity of gases and liquids, Turbulent flow, Nature of turbulence, Eddy viscosity, Eddy diffusivity of momentum, Flow in boundary layers, Laminar and turbulent flow in boundary layers, Boundary layer formation in straight tube and flat plates, Boundary layer thickness, Boundary layer separation and wake formation.

BASIC EQUATIONS OF FLUID FLOW

Stream line and stream tubes, Average velocity, Mass velocity, Momentum balance, Bernoulli's equation without friction, Correction of Bernoulli's equation for fluid friction, Pump work in Bernoulli's equation.

FLOW OF INCOMPRESSIBLE FLOW AND ITS APPLICATIONS IN CONDUITS AND THIN LAYERS (6 hours)

Flow of incompressible fluids in pipes, Friction factor, Laminar flow of Newtonian and non-Newtonian fluids, Turbulent flow in pipes and closed channels, Effect of roughness, Friction factor chart, Drag reduction in turbulent flow Friction factor in flow through channels of noncircular cross section, Friction from changes in velocity or direction, Effect of fittings and valves, Practical use of velocity heads in design, Minimization expansion and contraction losses.

FLOW OF COMPRESSIBLE FLUIDS AND ITS APPLICATIONS (4 hours)

Continuity equations, Velocity of sound, Stagnation temperature, Processes of compressible flow.

• FLUID FLOW MEASUREMENTS

Fluid flow measurement: venture meter, Orifice meter, Rotameter, Pitot tubes, etc.

APPLICATIONS OF FLUID MECHANICS

Transportation and metering of fluids: Pipe, fitting and valves, pumps, compressor, blowers and fans, Flow past immersed bodies: Drag, Drag coefficients, Flow through beds of solids, Particle motion, Terminal velocity, Hindered settling, Settling and rise of bubbles and drops, Fluidization, Introduction to computational fluid dynamics (CFD).

(Total contact time: 45 hours)

(8 hours)

(10 hours)

(3 hours)

(4 hours)

(4 hours)

(6 hours)

PRACTICALS

- 1. Experiment on viscosity by Stokes' law
- 2. Experiment on Reynolds number
- 3. Experiment on friction in circular pipe
- 4. Experiment on friction in annulus
- 5. Experiment on venturimeter
- 6. Experiment on orifice meter
- 7. Experiment on characteristics of centrifugal pump
- 8. Experiment on equivalent length of pipe fittings

BOOKS RECOMMENDED

- 1. McCabe W.L., Smith J.C., Harriott P., "Unit Operations of Chemical Engineering", 6th & 7th Eds., McGraw-Hill, New York, 2001 & 2005.
- 2. Coulson & Richardson's Chemical Engineering, Vol. 2, 5th Ed., Elesevier, New Delhi, 2005.

- Coulson & Richardson's Chemical Engineering, Vol. 2, 3nd Ed., Elesevier, New Delhi, 2003.
 Coulson & Richardson's Chemical Engineering, Vol. 4, 2nd Ed., Elesevier, New Delhi, 2001.
 Coulson & Richardson's Chemical Engineering, Vol. 6, 4th Ed., Elesevier, New Delhi, 2006.
 de Nevers N., "Fluid Mechanics for Chemical Engineers", 2nd Ed., McGraw-Hill, New York, 1991.

B. Tech	n. III (CH), Semester-VI	L	Т	Р	С
<u>CH 308</u>	8: MASS TRANSFER OPERATIONS-II	3	1	2	5
•	ABSORPTION Equilibrium, material balance for single component tran operation, multicomponent system, non-isothermal op- reaction			& packe	
•	LIQUID EXTRACTION Liquid equilibria, stage wise extraction, stage type extra	ctor, diffe	erential e		Hours)
•	ADSORPTION AND ION-EXCHANGE Adsorption equilibria, stage wise and continuous operation	ons		(06)	Hours)
•	DRYING Equilibrium, batch drying, mechanism, continuous			(06	Hours)
•	LEACHING Steady state & unsteady state operations, methods of cal	culation		(04	Hours)
•	CRYSTALLIZATION Equilibrium, operations and equipment			(03	Hours)
•	INTRODUCTION TO RECENT SEPARATION TE Ultrafiltration, reverse osmosis, nanofiltration, liquid me	-	UE	(08	Hours)
		(Total c	ontact ti	ime: 45 l	nours)

PRACTICALS

- 1. Leaching
- 2. Liquid-liquid extraction
- 3. Freundlich isotherm
- 4. Ternary diagram
- 5. Drying
- 6. Fluidization apparatus
- 7. Cooling tower
- 8. Fluid bed dryer
- 9. Evaporator

BOOKS RECOMMENDED:

1. Treybal R.E., "Mass-Transfer Operations", 3rd Ed., McGraw-Hill, Singapore, 1981.

2. McCabe W.L, Smith J.C., Harriott P., "Unit Operations in Chemical Engineering", 6th &7th Eds., McGraw-Hill, New York, 2001 & 2005.

3. Coulson J.M., Richardson J.F., Backhurst J. R., Harker J.H. "Coulson & Richardson's Chemical Engineering", Vol. 1, 6th Ed., Elservier, New Delhi, 2004. 4. Chopey N.P., "Handbook of Chemical Engineering Calculations", 3rd Ed., McGraw-Hill, New

York, 2004.

5. Suryanarayana A., "Mass Transfer Operations", New Age International, New Delhi, 2002.