Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Artificial Intelligence B.Tech. Artificial Intelligence

Sr. No.	Subject	Code	Scheme L-T-P	Credits (Min.)	Notional hours of Learning (Approx.)
	First Semester (1 st year of UG)		T	T	1
1	Introduction to Computer Science	<u>AI101</u>	3-1-0	4	70
2	Introduction to Programming	<u>AI103</u>	3-0-2	4	85
3	English and Professional Communication	<u>HS110</u>	3-1-0	4	70
4	Electrical Network Analysis	<u>EE103</u>	3-0-2	4	85
5	Fundamentals of Engineering Mathematics	MA105	3-1-0	4	70
			Total	20	380
6	Vocational Training / Professional Experience	AIV01 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	AIP01			(20 x 10)
	Second Semester (1st year of UG)				
1	Data Structures	<u>AI102</u>	3-1-2	5	100
2	Web Programming and Python	AI104	3-0-2	4	85
3	Energy and Environmental Engineering	EG110	3-0-2	4	85
4	Linear Algebra and Statistics	MA106	3-1-0	4	70
5	Digital Electronics and Logic Design	EC106	3-0-2	4	85
6	Indian Value System and Social Consciousness	HS120	2-0-0	2	35
			Total	23	460
7	Vocational Training / Professional Experience	AIV02 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	AIP02			(20 x 10)
	Third Semester (2 nd year of UG)	<u>'</u>	I.	l.	
1	Computer Organization	AI201	3-1-0	4	70
2	Database Management Systems	AI203	3-0-2	4	85
3	Design and Analysis of Algorithms	AI205	3-1-0	4	70
4	Discrete Mathematics	AI207	3-1-0	4	70
5	Object Oriented Programming	Al231	3-0-2	4	85
	, , ,		Total	20	380
	Fourth Semester (2 nd year of UG)			I	I
1	Artificial Intelligence	AI202	3-0-2	4	85
2	Operating Systems	AI204	3-0-2	4	85
3	Automata and Formal Languages	AI206	3-1-0	4	70
4	Computer Networks	AI208	3-0-2	4	85
5	Microprocessor and Interfacing Techniques	AI232	3-0-2	4	85
	0 1 4		Total	20	410
6	Minor / Honor (M/H#1)	AI2AA	3-X-X	3/4	55/70/85
7	Vocational Training / Professional Experience	AIV04 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	AIP04			(20 x 10)
	Fifth Semester (3 rd year of UG)		l	I	/
1	Machine Learning	Al301	3-0-2	4	85
-		7501	1 3 5 2		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

2	Data Science	AI303	3-0-2	4	85
3	Information Security and Cryptography	Al331	3-0-2	4	85
	(Optional Core)				
4	Elective	AI3AA	3-X-X	3/4	55/70/85
5	Elective (Specialization#1)	AI3BB	3-X-X	3/4	55/70/85
			Total	18-20	365-425
6	Minor / Honor (M/H#2)	AI3CC	3-X-X	4	70/85
	Sixth Semester (3 rd year of UG)				
1	Deep Learning	AI302	3-0-2	4	85
2	Cloud Computing	AI304	3-0-2	4	85
3	Reinforcement Learning	AI332	3-0-2	4	85
4	Elective	AI3DD	3-X-X	3/4	55/70/85
5	Elective (Specialization#2)	AI3EE	3-X-X	3/4	55/70/85
			Total	18-20	365-425
6	Minor / Honor (M/H#3)	AI3FF	3-X-X	4	70/85
7	Vocational Training / Professional Experience	AIV06 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	AIP06			(20 x 10)
	Seventh Semester (4 th year of UG)				
1	Intelligent Multiagent and Expert Systems	AI401	3-0-2	4	85
2	Elective	AI4AA	3-X-X	3/4	55/70/85
3	Elective	AI4BB	3-X-X	3/4	55/70/85
4	Elective (Specialization#3)	AI4CC	3-X-X	3/4	55/70/85
5	Elective (Specialization#4)	AI4DD	3-X-X	3/4	55/70/85
			Total	16-20	305-425
6	Minor / Honor (M/H#4)	AI4EE	3-X-X	4	70/85
	Eighth Semester (4 th year of UG)				
1	Industrial Internship / Professional Experience	AIP08	0-0-40	20	800
	(Mandatory)				(20 x 40)
			Total	20	800

Sr.	Optional Core	Code	Scheme
No.			L-T-P
1	Object Oriented Programming	Al231	3-0-2
2	Microprocessor and Interfacing Techniques	AI232	3-0-2
3	Information Security and Cryptography	Al331	3-0-2
4	Reinforcement Learning	Al332	3-0-2

Sr.	Elective	Code	Scheme
No.			L-T-P
1	Probabilistic Graphical Model	Al351	3-1-0
2	IoT and Edge Computing	Al352	3-0-2
3	Computer Graphics	Al353	3-0-2

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

		1	, , , , , , , , , , , , , , , , , , , ,
4	System Software	AI354	3-0-2
5	Information Retrieval	AI355	3-0-2
6	Cyber Physical Systems	Al356	3-0-2
7	Data Structure and Algo	AI357	3-0-2
8	Optimization Techniques	AI358	3-1-0
9	Big data analytics and Large-Scale Computing	AI359	3-0-2
10	Computational Intelligence	AI360	3-0-2
11	Human Computer Interaction	Al361	3-0-2
12	Multimedia System & Applications	AI362	3-0-2
13	Unmanned Aerial Vehicles Information System	AI363	3-0-2
14	Introduction to Data Science	AI364	3-1-0
15	Natural Language Processing	AI365	3-0-2
16	Computer Vision and Image Processing	AI366	3-0-2
17	High Performance Computing	AI367	3-0-2
18	Social Network Analysis	AI368	3-0-2
19	Digital Forensics	AI369	3-0-2
20	Unmanned Aerial Vehicles Forensics	AI370	3-0-2
21	Speech and Audio Processing	Al371	3-0-2
22	Data Visualization	AI372	3-0-2
23	Machine Learning for Security	AI373	3-0-2
24	Service Oriented Architectures	AI374	3-0-2
25	Introduction to Al	AI375	3-0-2
26	Game Theory with AI and ML	AI451	3-0-2
27	Al for Bio-Medical Image Processing	AI452	3-0-2
28	Cloud Computing for AI and ML	AI453	3-0-2
29	Surveillance Video Analysis	AI454	3-0-2
30	Adversarial Machine Learning	AI455	3-0-2
31	Secure Cloud Computing	AI456	3-0-2
32	IoT & Sensor Data Analytics	AI457	3-0-2
33	Robotics Process Automation	AI458	3-0-2
34	Advanced Database Management System	AI459	3-0-2
35	Innovation, Incubation and Entrepreneurship	AI460	3-0-2
36	Research Methodology	Al461	3-1-0
37	Bioinformatics	AI462	3-0-2
38	Data Mining	AI463	3-0-2
39	Drone and Automation Systems	AI464	3-0-2
40	Animation and Rendering	AI465	3-0-2
41	System Analysis and Simulation	AI466	3-0-2
42	Introduction to ML	AI467	3-0-2
43	Applied Machine Learning	AI468	3-0-2

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – I INTRODUCTION TO COMPUTER SCIENCE (CORE-1)	Scheme	L	Т	Р	Credit
Al101		3	1	0	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	Acquire knowledge about computers and computational problem solving.
CO2	Design the solutions of computational problems using iterative and recursive methods using flowcharts and pseudo-codes.
CO3	Solve computational problems in different number systems.
CO4	Analyse the importance of different types of memory and evaluate the impact of different algorithms on memory.
CO5	Experiment with different operating systems such as Windows and Linux and write scripts to automate repetitive tasks.

2.	Syllabus		
	INTRODUCTION TO COMPUTER AND ITS ARCHITECTURE	(04 Hours)	
	Introduction and Characteristics, Computer Architecture, Generations, Cla Applications, Central Processing Unit and Memory, Communication between va Processor Speed, Multiprocessor System, Peripheral Buses, Motherboard Demonst	arious Units,	
	NUMBER SYSTEMS	(06 Hours)	
	Introduction and type of Number System, Conversion between Number System, Arithmo Operations in different Number System, Signed and Unsigned Number System.		
	COMPUTATIONAL PROBLEM SOLVING	(08 Hours)	
	Program Development Cycle, Pseudocode, Flowchart, Representing Information as Bits, Bina System, Storing Integers, Storing Fractions, Examples of Computational Problems, Iterative at Recursive Approaches to Solve Computational Problems, Easy and Hard Computational Problems		
	MEMORY AND VARIOUS INPUT AND OUTPUT DEVICES	(04 Hours)	
	Introduction to Memory, Input and Output Devices, Memory Hierarchy, Primary Memits Types, Secondary Memory, Classification of Secondary Memory, Various Secondary Devices and their Functioning.		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

INTRODUCTION TO SYSTEM SOFTWARES AND PROGRAMMING LANGUAGES	(03 Hours)
Classification of Computer Languages, Introduction of Operating System, Evolution Function of OS, Unix Commands, Evolution and Classification of programmin Feature and Selection of good Programming Language, Development of Program, A Flowchart, Program Testing and Debugging, Program Documentation and Characteristics of good Program.	g Language, Igorithm and
WINDOWS OPERATING SYSTEM AND ITS ENVIRONMENT	(03 Hours)
Introduction to GUI based OS, Configuration, Setup, Services, Network Configuration	on.
LINUX OPERATING SYSTEM AND ITS ENVIRONMENT	(06 Hours)
Introduction to Linux OS, Configuration, Setup, Commands – Navigating File Permissions (R/W/X), Access control and super user (sudo) privileges, Scripting Shell and Scripting, Network Configuration.	-
DEBUGGING TOOLS AND COMPILER OPTION	(03 Hours)
Different Debugging tools, Commands, Memory dump, Register and Variab Instruction and Function level debugging, Compiler Options, Profile Generation.	le Tracking,
DATA COMMUNICATION, COMPUTER NETWORK AND INTERNET BASICS	(04 Hours)
Data Communication and Transmission media, Multiplexing and Switching, Computant Network Topology, Communication Protocols and Network Devices, Evolution Internet Term, Getting Connected to Internet and Internet Application, Email and Searching the Web, Languages of Internet, Internet and Viruses.	on and Basic
SYSTEM AND NETWORK SECURITY BASICS	(04 Hours)
Security Services, Security Attacks, and Security Mechanisms, Authentication Strengths and Entropy, Access Control Mechanisms, Read/Write/Execute Permissio User/Administrator Privileges, Introduction of HTTPS and Digital Certificates	•
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)
(Total Contact Time: 45 Hours + 15 Hours	s = 60 Hours)

3.	Tutorials
1	Number System
2	Problem Solving using Algorithms
3	Problem Solving using Flowcharts
4	Linux Commands

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Artificial Intelligence B.Tech. Artificial Intelligence

5	Bash Shell Scripting

4.	Books Recommended
1.	Introduction to Computer Science", Fourth Impression, Pearson Education, ITL Education Solutions Limited, 2009.
2.	Nell Dale and John Lewis, "Computer Science Illuminated", Jones and Bartlett Publishers.
3.	Robert Sedgewick and Kevin Wayne, "Computer Science", Addison-Wesley.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – I INTRODUCTION TO PROGRAMMING (CORE-2)	Scheme	L	Т	Р	Credit
Al103		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	Acquire knowledge about fundamentals of C programming language.
CO2	Apply the knowledge of C Programming to solve computational problems.
CO3	Debug, test, and analyse C Programs to find and correct errors and improve the solutions.
CO4	Learn various programming techniques such as iteration and recursion, and apply them to solve computational problems.
CO5	Learn and apply the advanced programming concepts such as modularization, memory management, and file handling to improve the efficiency of computational problems.

2.	Syllabus	
	OVERVIEW OF C PROGRAMMING LANGUAGE	(02 Hours)
	History of C, Importance of C, Basic Structure of a C Program, How to Compile a C Program, Sample Programs.	rogram, How
	CONSTANTS, VARIABLES, AND DATA TYPES	(03 Hours)
	Character Set in C, Keywords, Identifiers, Constants, Strings, Operators, Special Symbols Variables, Data Types: Primary Data Types and User Defined Data Types, Declaration of Variables, Assigning Values to Variables, Initialization of Variables, Defining Symbolic Constants Declaring Variables as Constants.	
	OPERATORS AND EXPRESSIONS	(03 Hours)
	Operators: Arithmetic, Relational, Logical, Assignment, Increment and Decrement, Bitwise, Comma Operator, sizeof Operator, Operators used in Pointers and Arithmetic Expressions, How C programming Evaluates Arithmetic Expressions, Pr Arithmetic Operators and Associativity Rule, Type Conversion: Implicit and Explicit	Structures, eccedence of
	LIBRARY FUNCTIONS: INPUT, OUTPUT, MATHEMATICS, DATE AND TIME	(03 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

Reading Character from Keyboard, Printing Character on Screen, Reading String f Printing String on Screen, Formatting input and Output, difftime, clock, time, M abs, fmod, reminder, log, log2, pow, sqrt, ceil, floor.	•
DECISION MAKING AND BRANCHING	(04 Hours)
Decision Making in C Programming, If Statement, Nested If Statement, Else If Statement, Conditional Operator Statement, Goto Statement, Decision Makin Operators, Sample Programs.	
DECISION MAKING AND LOOPING	(05 Hours)
Introduction to Loops, While Loop, Do While Loop, For Loop, Break Statement, Go Continue Statement, Sample Programs.	oto Statement,
ARRAYS AND CHARACTER ARRAYS	(05 Hours)
Introduction to Arrays, One Dimensional Array, Declaration and Initializ Dimensional Array, Two Dimensional Array, Declaration and Initialization of Tw Array, Multi-Dimensional Array, Sample Programs, Declaration and Initialization Arithmetic Operations on Characters, String Functions: Strlen(), Strcat(), StrCat(), etc.	o Dimensional on of Strings,
FUNCTIONS	(05 Hours)
Function Declaration, Function Definition, Function Calls, Functions with No Arguments and No Return Values, Functions with Arguments and Return Values, Functions with Arguments and Return Values, Recursive Fun Arrays to Functions, Call by Value, Call by Reference, Scope and Lifetime of Functional, Static, and Register Declaration.	No Arguments ctions, Passing
STRUCTURES AND UNIONS	(04 Hours)
Structure Template, Structure Variable Declaration and Initialization, Structure Assignment, Accessing Structure Variables, Arrays as Structure, Arrays with Structure Members to Functions, Unions, Difference Between Structures and Unions	ctures, Passing
POINTERS AND MEMORY MANAGEMENT	(05 Hours)
Declaration and Initialization of Pointers, Accessing Memory through Poin Memory Allocation, Memory Management Functions: Malloc, Calloc, and Free, to Access Dynamically Allocated Memory Locations, Pointers with Arrays, Use Return Multiple Values From Functions, Sample Program: Linked List.	Using Pointers

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

FILE MANAGEMENT	(04 Hours)
Opening and Closing a File, Modes in File Opening: Read, Write and Append, Inpoperations on Files, File Handling Functions such as fseek(), ftell(), rewind().	ut and Output
PREPROCESSOR DIRECTIVES	(02 Hours)
Macro Substitution, Importing a File, Compiler Control Directives.	
Practicals will be based on the coverage of the above topics separately	(30 Hours)
(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)	

3.	Practicals
1	C Programming – How to write a program, compile a program, and execute a program
2	Read the input from a keyboard and write the output to computer screen
3	Variable declaration, initialization, and assignment, Constant declaration, Experiments with different data types
4	Experiments with different C Operators, Analysing the impact of precedence and associativity rules while evaluating expressions in C
5	Experiments with standard library functions related to math library, time library, standard input and output library etc.
6	Experiments with If, Else If, Switch, Goto statements
7	Experiments with While, DoWhile, For Loops, and analysing the impact of Break, Goto and Continue statements on C Loops
8	Experiments with Arrays and Character Arrays
9	Experiments with Different Functions having Arguments/No Arguments and Return Values/No Return Values, Scope and Lifetime of Functions, and Understanding Local, Global, Static, and Register Declaration
10	Experiments with Structures and Unions, Analysing the difference between the structure and union with respect to memory
11	Experiments with Pointers with respect to Accessing Memory from the Stack and Heap Section of the RAM (i.e., Experiments with Static and Dynamic Memory Management)
12	Opening, Closing the Files using a C program, and accessing the files to get the input from the file and store the output to the file.
13	Experiments with pre-processor directives.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

4.	Books Recommended
1.	E. Balagurusamy, "Programming in ANSI C", Mc-Graw Hill.
2.	Brian W. Kernighan / Dennis Ritchie, "The C Programming Language", Pearson.
3.	Yashavant Kanetkar, "Let us C", BPB Publications.
4.	Harbison and Steele, "C: A Reference Manual"

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – I ENGLISH AND PROFESSIONAL COMMUNICATION	Scheme	L	Т	Р	Credit
HS110		3	1	0	04

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Show enhanced reception towards the use of English language.
CO2	Choose and employ appropriate words for professional communication.
CO3	Develop sentences and text in English coherently and formally.
CO4	Demonstrate overall improvement in oral communication.
CO5	Analyze and infer from written and oral messages.

2.	Syllabus	
	COMMUNICATION	(05 Hours)
	Introduction to Communication, Different forms of Communication, Barriers to Co and some remedies, Non-Verbal Communication – Types, Non-Verbal Communication – Types, Non-Verbal Communication	
	VOCABULARY AND USAGE OF WORDS	(05 Hours)
	Common Errors, Synonyms, Antonyms, Homophones, and Homonyms; One Word Misappropriations; Indianisms; Redundant Words.	Substitution;
	LANGUAGE THROUGH LITERATURE	(09 Hours)
	Selected short stories, essays, and poems to discuss nuances of English language.	
	LISTENING AND READING SKILLS	(06 Hours)
	Types of listening, Modes of Listening-Active and Passive, Listening and note tale Practice and activities; Reading Comprehension (unseen passage-literary technical) Skimming and scanning, fact vs opinion, Comprehension practice	
	SPEAKING SKILLS	(10 Hours)
	Effective Speaking, JAM, Presentation Skills- types, preparation and practice. Interpreparation and mock interview; Group Discussion- types, preparation and practi	• • • •
	WRITING SKILLS	(10 Hours)
	Prerequisites of effective writing, Memo-types, Letter Writing- types, Email e Netiquette, Résumé-types, Report Writing and its types, Editing.	etiquette and

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Artificial Intelligence B.Tech. Artificial Intelligence

Tutorials will be based on the coverage of the above topics separately.	(15 Hours)
(Total Contact Time: 45 Hours + 15 Hour	rs = 60 Hours)

3.	Tutorials
1	Letter and Resume
2	Group Discussion
3	Presentation Skills (Individual)
4	Role Play on Nonverbal communication
5	Group Presentation
6	Debate
7	Body language and intercultural communication
8	Listening Activities
9	Editing
10	Report Writing
11	Mock interviews
12	JAM

4.	Books Recommended
1	Kumar, Sanjay and Pushp, Lata. <i>Communication Skills</i> , 2 nd Edition, OUP, New Delhi, 2015.
2	Raman, Meenakshi & Sharma Sangeeta. <i>Technical Communication Principles and Practice</i> , 3 rd
	Edition, OUP, New Delhi, 2015.
3	Raymond V. Lesikar and Marie E Flatley. Basic Business Communication skills for Empowering
	the Internet generation. Tata McGraw Hill publishing company limited. New Delhi 2005.
4	Courtland L. Bovee, John V. Thill, and Mukesh Chaturvedi. "Business Communication Today."
	Ninth Edition. Pearson, 2009.
5	Mike Markel. "Practical Strategies for Technical Communication," Bedford/ St. Martin's Second
	Edition, 2016

ADDITIONAL REFERENCE BOOKS 1 Laura J. Gurak and John M. Lannon. "Strategies for Technical Communication in the Workplace," Pearson, 2013.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – I ELECTRICAL NETWORK ANALYSIS	Scheme	L	Т	Р	Credit
EE103		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	acquire knowledge about AC circuits, electrical network basics, transforms, wave form representation.
CO2	apply the fundamentals of electrical network basics to analyse different networks.
CO3	analyse electrical network using different theorems and different wave forms.
CO4	evaluate network performance using different parameters.
CO5	design and analyse different types of systems using network principles and network theorems.

2.	Syllabus				
	AC FUNDAMENTALS AND CIRCUITS	(10 Hours)			
	Alternating Voltages and Currents through Purely Resistive Inductive and Capacitive L, R-C, R-L-C Series Circuits, Impedance and Admittance, Circuits in Parallel, Series Resonance, Complex Algebra and its Application to Circuit Analysis, Circuit Transien Final Value Theorem, DC and Induction Machines, Electrical Measurements, Power				
	POLYPHASE CIRCUITS AND TRANSFORMES	(10 Hours)			
Balanced Three Phase Systems, Star and Mesh Connections, Relation between Line and Quantities, Measurement of Power, Principle of Transformer, Construction, Transformer load and with load, Phasor Diagram for Transformer under No-Load and Loaded Condition unity, lagging power factor load) Equivalent Circuit, Open Circuit and Short Circuit Efficiency, Voltage Regulation.					
	NETWORK CONCEPTS	(04 Hours)			
	Network Element Symbols and Conventions, Active Element Conventions, Current and Volt Conventions, Loops and Meshes, Nodes, Coupled circuits and Dot Conventions.				
	MESH CURRENT AND NODE VOLTAGE NETWORK ANALYSIS	(04 Hours)			
	Kirchhoff's Voltage Law, Kirchhoff's Current Law, Definitions of Mesh Current and Nodal Voltages for Network Analysis, Self and Mutual Inductan Mesh Equation in the Impedance Matrix Form by Inspection, Solution of Linear Mesh Equations of Code, ###XXX, ###, Department Identity, p. Year, XXX, Subject Sequence number, XXI, lock do				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

b.iech. Artificial intelligence	
Nodal Voltage Analysis Nodal Equations in the Form of Admittance Matrices Solution of Linear Nodal Equations.	by Inspection,
NETWORK THEOREMS AND GRAPH	(06 Hours)
Linearity and Superposition, Independent and Dependent Source and their Tr Thevenin, Norton, Reciprocity and Maximum Power Transfer Theorems, Use of the in Circuit Analysis, Duality and Dual of a Planner Network, Fundamental Conce of Graph and Various Related Terms, Paths and Circuits Connections, Tree of a Cand Tie Sets, Non-separable Planner and Dual Graphs, Matrices of Oriented Graph and Inter-Relationship of Incidence, Tie Set and Cut Set Matrices, Complete Analysis and Cut Set Matrices.	hese Theorems epts, Definition Graph, Cut Sets phs, Properties
WAVE FORM ANALYSIS BY FOURIER SERIES	(03 Hours)
Trigonometric and Complex Exponential Forms, Frequency Spectra of Periodic Fourier Integral and Continuous Frequency Spectra, Fourier Transform and the with Laplace Transform.	-
NETWORK FUNCTIONS AND TWO PORT PARAMETERS	(08 Hours)
Poles and Zeros of a Function, Physical and Analytical Concepts, Terminal and Driving Point Immitances, Transfer Functions, Definitions, Calculations and Inter Impedance, and Admittance, Hybrid and Transmission Line Parameters for Networks. Image Impedance and its Calculations for Symmetrical and Unsymmetrical Networks.	relationship of four Terminal
Practicals will be based on the coverage of the above topics separately.	(30 Hours)
(Total Contact Time: 45 Hours + 30 Hours	

3.	Practical
1	To study Ammeter and Voltmeter for current and voltage measurement in circuit.
2	To study Energy meter.
3	Verification of superposition theorem for electric circuit.
4	To study Power measurement method for three phase circuits using watt meter method.
5	Verification of Thevenin's theorem of electric circuit.
6	Calculation and verification Norton's theorem.
7	Open circuit and short circuit test for the transformers for efficiency calculation.
8	Verification of Kirchhoff's current law and Kirchhoff's voltage law for electric circuit.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

ç)	Capacitance measurement of parallel plates.
1	0	Calculation of efficiency of auto transformer.

4.	Books Recommended
1.	W.H.Hyat, J.E.Kemmerly, S.M.Durbin, "Engineering Circuit Analysis", 6 th Edition, TMH, 2006.
2.	Van Valkenburg M E, "Network Analysis", 3 rd Edition, PHI, 2002.
3.	Samarjit Ghosh, "Network Theory, Analysis & Synthesis",3 rd Edition, PHI, 2005.
4.	C.L.Wadhwa, "Network Analysis & Synthesis", Revised 3 rd Edition, New Age International Publishers, 2007.
5.	Kothari and Nagrath, "Basic Electrical Engineering", 2 nd edition, Tata McGraw-Hill Education, 2007.

ADDITIONAL REFERENCE BOOKS

1. V. N. Mittle & Arvind Mittal, "Basic Electrical Engineering", 2nd edition, Tata McGraw-Hill Education, 2005.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – I FUNDAMENTALS OF ENGINEERING MATHEMATICS	Scheme	L	Т	Р	Credit
MA105		3	1	0	04

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Accept the challenge to solve the problem with Mathematics.
CO2	Apply the knowledge of curve tracing to solve problem of engineering.
CO3	Identify, formulate and analyze complex engineering and affiliated field problems, specifically the differential equation concept in different engineering field.
CO4	Apply the knowledge of mathematics for model and analyze computational processes using analytic and combinatorial methods
CO5	Design solutions engineering industrial problems with effective mathematical skill.

2.	Syllabus		
	DIFFERENTIAL CALCULUS	(09 Hours)	
	Differentiation of Hyperbolic and Inverse Hyperbolic functions. Successive Differentiation standard forms, Leibnitz's theorem and applications, Power series, Expansion of function. Taylor's and Maclaurin's series. Curvature, Radius of curvature for Cartesian curve wit application.		
	PARTIAL DIFFERENTIAL CALCULUS	(09 Hours)	
	Partial differentiation, Euler's theorem for homogeneous function, Modified Euler's theorem Taylor's and Maclaurin's series for two variables. Tangent plane and Normal line, Error and Approximation, Jacobians with properties, Extreme values of function of two variables Lagrange's methods of undetermined multipliers.		
	CURVE TRACING	(06 Hours)	
	Cartesian, polar and parametric form of standard curves.		
	ORDINARY DIFFERENTIAL EQUATION	(09 Hours)	
	Reorientation of differential equation first order first degree, exact differential equation and Integrating factors, first order higher degree odes, solvable for p, y and x, Solution o homogenous equations higher order, complementary functions, Particular Integrals, Linea differential equation with variable coefficient, Cauchy's Euler and Legendre's equation with variable coefficient, Method of variation of parameters.		
	APPLICATION OF DIFFERENTIAL EQUATION (Mathematical Modelling)	(06 Hours)	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

Modelling of Realworld problems particularly Engineering System, Electric (LCR), spread of epidemic (SI, SIS, SIR), Newton's Law of cooling, Compa Bending of beam models.	
SERIES SOLUTION AND SPECIAL FUNCTIONS	(06 Hours)
Regular point, Singular point, series solution of ODE of 2nd order with varial special emphasis to differential equation of Legendre's and Bessel's for differential equations.	
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)
(Total Contact Time: 45 Hours + 15	Hours = 60 Hours)

3.	Tutorials
1	Problems on Array
2	Problems on Stack and Queue
3	Problems on Linked List
4	Problems on Trees
5	Problems on Graph

4.	Books Recommended
1	James Stewart, "Calculus", Thomson Asia, Singapore, 2003.
2	Kreyszing E., "Advanced Engineering Mathematics", John Wiley & Sons, Singapore, Int. Student Ed. 2015.
3	Wiley C. R., "Advanced Engineering Mathematics", McGraw Hill Inc., New York Ed. 1993.
4	F. B. Hilderband, "Methods of Applied mathematics", PHI, New Delhi, 1968
5	Ramana D. V., "Higher Engg. Mathematics", The McGraw-Hill Inc., New Delhi, 2007.

ADD	ADDITIONAL REFERENCE BOOKS				
1	Srimanta Pal, Subodh C. Bhunia, "Engineering Mathematics", Oxford University Press, New Delhi, 2015.				
2	Bali and Iyengar, "Engineering Mathematics", Laxmi Publications, New Delhi, 2004.				
3	Mary L. Boas, "Mathematical Methods in the Physical Sciences", John Wiley & Sons, Ed.2005				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – II	Scheme	L	Т	Р	Credit
DATA STRUCTURES (CORE-3) AI102		3	1	2	05

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	recognize the need of different data structures and understand its characteristics.
CO2	apply different data structures for given problems.
CO3	design and analyse different data structures, sorting and searching techniques.
CO4	evaluate data structure operations theoretically and experimentally.
CO5	give solution for complex engineering problems.

2.	Syllabus			
	INTRODUCTION TO DATA STRUCTURES	(03 Hours)		
	Review of Concepts: Information and Meaning, Abstract Data Types, Internal Repr Primitive Data Structures, Arrays, Strings, Structures, Pointers.			
	LINEAR LISTS	(06 Hours)		
	Sequential and Linked Representations of Linear Lists, Comparison of Insertion, Search Operations for Sequential and Linked Lists, Doubly Linked Lists, Circular Standard Template Library (STL), Applications of Lists.			
	STACKS	(06Hours)		
	Sequential and Linked Implementations, Representative Applications such a Expression Evaluation Viz., Infix, Prefix and Postfix, Parenthesis Matching, Town Wire Routing in a Circuit, Finding Path in a Maze.			
	QUEUES	(06 Hours)		
	Operations of Queues, Circular Queue, Priority Queue, Dequeue, Application Simulation of Time Sharing Operating Systems, Continuous Network Monitoring			
	SORTING AND SEARCHING	(04 Hours)		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

(SO Hours (Total Contact Time: 45 Hours + 15 Hours + 30 Hours = 90 Hours				
Tutorials will be based on the coverage of the above topics separately Practical will be based on the coverage of the above topics separately	(15 Hours)			
Topological Sort and Critical Paths.				
Applications, Adjacency Matrix and Linked Adjacency Chains, Graph Traversal, Bro Depth First Traversal, Spanning Trees, Shortest Path and Transitive Closure, Acti	eadth First and			
Definition, Terminology, Directed and Undirected Graphs, Properties, Connecti				
GRAPHS	(07 Hours)			
Height of B-Tree, 2-3 Trees, Sets and Multisets in STL.	te Operations,			
Issues in Large Dictionaries, M-Way Search Trees, BTrees, Search, Insert and Dele				
MULTIWAY TREES	(05 Hours)			
Huffman Coding, Tournament Trees, Bin Packing.				
Priority Queues, Heap Implementation, Insertion and Deletion Operations, Heap	•			
Traversal Methods and Algorithms, Complete Binary Trees, General Trees, AVL Trees, Arithmetic Expression Evaluation, Infix-Prefix-Postfix Notation Converse	•			
Binary Trees and Their Properties, Terminology, Sequential and Linked Implementation				
TREES	(08 Hours)			
Search, Character Strings and Different String Operations.				
Hashing, Analysis of Collision Resolution Techniques, Searching Methods, Linear Search, Binary				
Sorting Methods, Bubble Sort, Selection Sort, Quick Sort, Radix Sort, Bucket Sort, Dictionaries,				

3.	Tutorials
1	Problems on Array
2	Problems on Stack and Queue
3	Problems on Linked List
4	Problems on Trees
5	Problems on Graph

4.	Practical

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

1	Implementation of Array and its applications
2	Implementation of Stack and its applications
3	Implementation of Queue and its applications
4	Implementation of Link List and its applications
5	Implementation of Trees and its applications
6	Implementation of Graph and its applications
7	Implementation of Hashing functions and collision resolution techniques
8	Mini Project (Implementation using above Data Structure)

5.	Books Recommended
1	Trembley & Sorenson: "An Introduction to Data Structures with Applications", 2/E, TMH, 1991.
2	Tanenbaum & Augenstein: "Data Structures using C and C++", 2/E, Pearson, 2007.
3	Horowitz and Sahani: "Fundamentals of Data Structures in C", 2/E, Silicon Press, 2007.
4	T. H. Cormen, C. E. Leiserson, R. L. Rivest: "Introduction to Algorithms",3/E, MIT Press, 2009.
5	Robert L. Kruse, C. L. Tondo and Brence Leung: "Data Structures and Program Design in C", 2/E, Pearson Education, 2001.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – II	Scheme	L	Т	Р	Credit
WEB PROGRAMMING AND PYTHON (CORE-4)					
AI104		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	acquire knowledge about the basics of web pages, need of web server, configuration, client and server side scripting, style of web pages and script programming.
CO2	install and configure the web server and apply the knowledge of programming to develop web application pages using html, style sheets, client and server side scripts using script programming.
CO3	analyse given problem for the requirement of html, style sheets, client side or server side script with different programming constructs.
CO4	evaluate web application programming solutions with different aspects like the presentation and working of the web application and usage of different scripting constructs.
CO5	utilize the standard tools for design and development of web project solution for given problems by integrating html, client and server pages with style and scripting.

2.	Syllabus	
	INTRODUCTION	(03 Hours)
	Basics of Internet, World Wide Web, HTTP Protocol, Universal Resource Locator, Different Types of Web Servers, Domain Name Server, Web Server Configurations Browser, Web Document and Mark-Up Language, Hypertext Mark-Up Language, Web Site Organization, Content Organization, Web Server on Different Operations, Web Applications, Web Interface, Web Standards & Accessible Design.	ion, Internet Hypermedia,
	STATIC AND DYNAMIC WEB PAGES, STYLE SHEETS AND WEB PUBLISHING	(17 Hours)
	Web Page, Static Web Page, Hypertext Mark-Up Tags, Handling Font Style, Types, Etc., Handling Table, List, Images, Graphics, Menu Etc; Forms, Input Text Box, Drop Name Variable, Cookie Management, Session Management, Animation, Structure Image Mapping, Link Setup In Image, Frames, Structuring Web Pages Using Frames Handling, Linking To Pages; Dynamic Web Pages and Scripting - Scripting Langua Pages and Forms Validation, Validation of Input Text Box, Dynamic Drop Down Men and Accessing Name Variable-Value Pair, Cookie Management Through Scripting, Management through Scripting, Animation through Scripting, Dynamic Imagement Scripting, Link Handling through Scripting, Multimedia Handling through	Down Menu, Web Pages, Multimedia ge, Dynamic u, Validation ting, Session ge Mapping

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

Web Page Designing using Style Sheet, Different Types of Style Sheet, Defining Different Styles,
Export and Importing Style Sheet, Cascade Style Sheet. Web Hosting and Publishing - Different
Steps of Web Hosting and Publishing, Documents Interchange Standards, Website Evaluation,
Components of Web Publishing, Document Management, Search Engines, and Registration of
a Web Site on Search Engines, Publishing Tools.

PYTHON PROGRAMMING

(25 Hours)

Basics of Python Programming: Variables, Keywords, Expressions, Data Types, Operators and Operands, Assignments, Order of Operations, Controlling Statements, Branching and Loops, Functions, Definitions, Arguments, Returning Values, Scopes, Recursive Functions, Modules and Import, Strings, Tuples, and Lists; Handling Exceptions – Try/Except, Standard Exceptions, Exceptions as Control Flow Mechanisms; Object Oriented Programming - Classes, Abstract Data Types, Inheritance, Encapsulation; Debugging – Syntax errors, Runtime Errors, Semantic Errors, Test Cases; Files – Reading, Iterating over Lines, Finding a File in File system, Writing Data to Files, CSV Format, Read and Write To/From CSV File; Dictionaries - Introduction, Dictionary Operations, Aliasing, Copying, Dictionary Accumulation, Introduction to Module Packages.

Practicals will be based on the coverage of the above topics.

(30 Hours)

(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)

3.	Practical
1	To prepare the web page using hypertext markup language
2	To study and setup the web server for implementation
3	To learn client side scripting
4	To learn server side scripting
5	To apply style to the web pages
6	To implement functions for files
7	To implement dictionary

4.	Books Recommended
1	Martin C. Brown, "Python: The Complete Reference, Osborne, McGraw-Hill, 2018.
2	Thomas Powell and fritz Schneider, "JavaScript: The Complete Reference, McGraw-Hill, 2017.
3	J. Sklar, "Principles of Web Design", 7/E, Cengage Learning, 2017.
4	H. Deitel, A. Deitel, "Internet and World Wide Web How to Program", 5/E, Pearson, 2012.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

5	John V. Guttag, "Introduction to Computation and Programming Using Python", MIT Press, 2013
	Edition.

ADD	ITIONAL REFERENCE BOOKS
1	Martin C. Brown, "Python: The Complete Reference, Osborne, McGraw-Hill, 2018.
2	1. M. L. Young," The Complete reference of Internet", Tata Mc Graw Hill, 2002.
3	2. W. G. Lehnert, "Internet 101, 1/E, Person Education, 2001.
4	B. Underdahle and K. Underdahle, "Internet and Web Page/ Website design", 2/E, IDG Books India (P) Ltd., 2001.
5	D. Comer, "The Internet Books," Prentice Hall of India, 2/E, 2001.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Artificial Intelligence B.Tech. Artificial Intelligence

	Scheme	L	Т	Р	Credit
ENERGY AND ENVIRONMENTAL ENGINEERING EG110		3	0	2	04

1.	Course Outcomes (COs):
	At the end of the course, students will be able to
CO1	Explain the components of ecosystems, various biogeochemical cycles and importance of different urban network services
CO2	Differentiate between various types of environmental pollution along with their impacts and regulatory standards
CO3	Examine various global environmental issues and their management
CO4	Discuss the fundamental principles of energy, including classification, conservation and related policy frameworks and regulations.
CO5	Get acquainted with the concept of energy systems and their components

2.	Syllabus	
	ENVIRONMENT AND ECOSYSTEMS	(10 Hours)
	Introduction: Concept of an ecosystem - structure and functions of ecosystem ecosystem - producers, consumers, decomposers; Food chains, food pyramids, energy flow in ecosystem; Bio-geochemical cycles, hydrologic cycles. Components of environment and their relationship, impact of technology environmental degradation, environmental planning of urban network service supply, sewerage, solid waste management; closed loop cycle, concepts of su	webs, ecological on environment, ces such as water
	ENVIRONMENTAL POLLUTION	(10 Hours)
	Water, air, soil, noise, thermal and radioactive, marine pollution - soul engineering control strategies; Centralized and decentralized treatment system quality and standards, ambient air and noise standards	-
	GLOBAL ENVIRONMENTAL ISSUES AND ITS MANAGEMENT	(10 Hours)
	Engineering aspects of climate change, concept of carbon credit, CO ₂ seques of environmental impact assessment and environmental audit, life cycle asses	-
	BASICS OF ENERGY AND ITS CONSERVATION	(07 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

and its characterization	Classification of energy sources, Global and national energy scenario, Fossil and alternate fuel and its characterization. General aspects of energy conservation and management; Energy conservation act, Energy policy of company; Need for energy standards and labelling; Energy building codes.	
INTRODUCTION TO EN	ERGY CONSERVATION SYSTEMS	(08 Hours)
normal rating specification	tems: Working principle, Basic components, General ations of various energy conversion systems like Povicioner, Internal combustion engine, Solar PV cell, Sol/Ind turbine, Fuel cells.	wer plant, Pump,
Practicals will be based	d on the coverage of the above topics separately.	(30 Hours)
	(Total Contact Time: 45 Hours + 30 H	lours = 75 Hours)

3.	Practicals
1	Performance Test on a computerised single cylinder diesel engine
2	Performance Test on Three-cylinder petrol engine
3	Determination of COP of vapor compression refrigeration system
4	Study of General Motors Cruze Vehicle Automotive System
5	Study of MG Hector Vehicle Automotive Systems
6	Measurement of direct and diffused Solar radiation using pyranometer
7	Determination of I-V Characteristics of solar PV Panel
8	Study of electricity and or gas bill
9	Study of pollutants from diesel Engine
10	Study of pollutants from petrol Engine

4.	Books Recommended
1	Daniel B. Botkin & Edward AKeller, Environmental Sciences, John Wiley & Sons.
2	R. Rajagopalan, Environmental Studies, Oxford University Press.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

3	Benny Joseph, Environmental Studies, TMH Publishers.
4	Dr. Suresh K. Dhameja, Environmental Studies, S. K. Kataria & Sons, 2007.
5	U. K. Khare, Basics of Environmental Studies, Tata McGraw Hill, 2011.

ADD	DITIONAL REFERENCE BOOKS
1	C. S. Rao, Environmental Pollution Control Engineering, New Age International Publishers, 2018

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Artificial Intelligence B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – II	Scheme	L	Т	Р	Credit
LINEAR ALGEBRA AND STATISTICS MA106		3	1	0	04
MATOO		_	_		• •

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	accept the challenge to solve the problem with statistics
CO2	apply the knowledge of Linear Algebra to solve problem of engineering.
CO3	identify, formulate and analyze complex engineering and affiliated field problems, specifically the Partial differential equation concept in different engineering field
CO4	apply the knowledge of vector calculus and analyze computational processes
CO5	design solutions to work on engineering industrial problems with effective mathematical skill.

2.	Syllabus				
	PROBABILITY THEORY AND RANDM PROCESS				
	Fundamentals of Probability Theory: - views of probability, Random varial distributions, Marginal distribution, Conditional probability, Conditional is Expectation and variance, Probability distributions Central limit theorem, Functional variable, Sum of independent random variable, Correlation and regression, Rasstationary random process, Autocorrelation and cross correlation, Ergodic process, Birth and death process, Poisson process, Markov chain, Chapma theory, Spectral analysis of random processes, power spectral density. ESTIMATION AND STATISTICS				
	Sampling theory, Population and sample, Statistical interference, Sampling distribution Sample mean, Bias estimation, Unbiased estimator, Confidence interval, Point estimation a interval estimates, Statistical decision, Hypothesis testing, Statistical hypotheses, Non hypotheses, Significance test, Type I and types II errors, Level of significance, One tail and the tailed test, Chi square test, Maximum likelihood estimate, Least square estimate, Maximum mean square estimate.				
	INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATION	(09 Hours)			
	Introduction to Partial differential equation, Formation of partial differential Equation, Padifferential Equation of first order, Linear partial differential equation of first order (Pp 4				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

=R) and method of obtaining its general solution, Non-linear partial differential equation of first order $f(p, q)=0$, $f(z, p, q)=0$, $f(x, p)=g(y, q)$, $z=px+qy+f(p,q)$.		
BASIC CONCEPTS OF VECTOR CALCULUS	(08 Hours)	
Scalar and vector point function, differential operator, gradient, directional derivative, divergence, curl and Laplacian operator with their properties.		
LINEAR ALGEBRA	(11 Hours)	
Linear systems, Elementary row and column transformation, rank of matrix, consistency of linear system of equations, Linear Independence and Dependence of vectors, Gauss Elimination method, Gauss-Jorden Method, Gauss-Jacobi Iteration Method; Vector spaces, Subspace, Field, Ring, Norm and distance, Linear Mapping, Orthogonality, Eigenvectors and Eigenvalues, Least square, Least square data fitting, Constrained least square applications.		
Tutorials will be based on the coverage of the above topics separately.	(15 Hours)	
(Total Contact Time: 45 Hours + 15 Hours)	ours = 60 Hours)	

3.	Books Recommended
1	Kreyszing E., "Advanced Engineering Mathematics", John Wiley & Sons, Singapore, Int. Student Ed. 2015.
2	Wiley C. R., "Advanced Engineering Mathematics", McGraw Hill Inc., New York Ed. 1993.
3	Gilbert Strang, "Introduction to Linear Algebra", Wellesley Cambridge Press, 4th Ed., 2009.
4	David C. Lay, "Linear Algebra and its applications", 3rd Ed., Pearson, 2006.
5	A. Papoulis and S. U. Pillai, "Probability, Random Variables and Stochastic Processes", 4th Ed., Mc-Graw Hill, 2002.

ADD	ITIONAL REFERENCE BOOKS
1	Ramana D. V., "Higher Engg. Mathematics", McGraw-Hill Inc., New Delhi, 2007.
2	Srimanta Pal, Subodh C. Bhunia, "Engineering Mathematics", Oxford University Press, New Delhi, 2015.
3	Mary L. Boas, "Mathematical Methods in the Physical Sciences", John Wiley & Sons, Ed.2005.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech. I (AI) Semester – II	Scheme	L	Т	Р	Credit
DIGITAL ELECTRONICS AND LOGIC DESIGN					
EC106		3	0	2	04

1.	Course Outcomes (COs): At the end of the course, students will be able to
CO1	acquire knowledge about different types of diodes and circuits.
CO2	apply the knowledge of gates, Boolean algebra and operational amplifier in designing logical and integrated circuits.
CO3	analyse the logical, integrated, and operational amplifier based circuits.
CO4	evaluate the different circuits and compare their performance.
CO5	design ALU and control unit.

2.	Syllabus				
	PN DIODE AND TRANSITOR	(07 Hours)			
	PN Diode Theory, PN Characteristic and Breakdown Region, PN Diode Application as Rectifier, Zener Diode Theory, Zener Voltage Regulator, Diode as Clamper and Clipper, Photodiode Theory, LED Theory, 7 Segment LED Circuit Diagram and Multi Colour LED, LASER Diode Theory and Applications, Bipolar Junction Transistor Theory, Transistor Symbols And Terminals, Common Collector, Emitter and Base Configurations, Different Biasing Techniques, Concept of Transistor Amplifier, Introduction to FET Transistor And Its Feature.				
	WAVESHAPING CIRCUITS AND OPERATIONAL AMPLIFIER (06 Hou				
	Linear Wave Shaping Circuits, RC High Pass and Low Pass Circuits, RC Integrated Differentiator Circuits, Nonlinear Wave Shaping Circuits, Two Level Diode Clipper Compined Circuits, Operational Amplifier OP-AMP with Block Diagram, Schematic Symbol AMP, 741 Package Style and Pinouts, Specifications of Op-Amp, Inverting and Non-In Amplifier, Voltage Follower Circuit, Multistage OP-AMP Circuit, OP-AMP Averaging An OP-AMP Subtractor.				
	BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS	(04 Hours)			
	Basic Logic Operation and Logic Gates, Truth Table, Basic Postulates and Fundamental Theory of Boolean Algebra, Standard Representations of Logic Functions- SOP and POS For Simplification of Switching Functions-K-Map and Quine-Mccluskey Tabular Methods, Synth of Combinational Logic Circuits.				
	COMBINATIONAL LOGIC CIRCUIT USING MSI INTEGRATED CIRCUITS	(07 Hours)			

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

Practical will be based on the coverage of the above topics separately.	(30 Hours
Control Organization; Hard-Wired Control; Micro Program Control; Control Of PLA Control.	Processor Uni
CONTROL LOGIC DESIGN	(04 Hours
Processor Organization; Design of Arithmetic Logic Unit; Design of Accumulato	r.
PROCESSOR LOGIC DESIGN	(03 Hour
Arithmetic, Logic and Shift Micro-Operation; Conditional Control Statements; Floating-Point Data; Arithmetic Shifts; Instruction Code and Design Of Simple C	
REGISTER TRANSFER LOGIC	(04 Hour
Basic Concepts of Counters and Registers; Binary Counters; BCD Counters; Up Johnson Counter, Module-N Counter; Design of Counter Using State Diagon Sequence Generators; Shift Left and Right Register; Registers with Parallel Parallel-Out (SIPO) And Parallel-In-Serial-Out (PISO); Register using Different Ty	rams and Table Load; Serial-Ir
SEQUENTIAL LOGIC CIRCUIT DESIGN	(06 Hour
Basic Concepts of Sequential Circuits; Cross Coupled SR Flip-Flop Using NAND of Flip-Flop Rise Condition; Clocked Flip-Flop; D-Type and Toggle Flip-Flops; Texcitation Tables for Flip-Flops; Master Slave Configuration; Edge Triggered and Flip-Flops; Elimination of Switch Bounce using Flip-Flops; Flip-Flops with Present	ruth Tables ard Level Triggere
INTRODUCTION TO SEQUENTIAL LOGIC CIRCUITS	(04 Hour
Demultiplexer Circuits; Implementation of Boolean Functions Using Decoder Arithmetic and Logic Unit; BCD to 7-Segment Decoder; Common Anode and Conference of T-Segment Displays; Random Access Memory, Read Only Memory and Erasabl ROMS; Programmable Logic Array (PLA) and Programmable Array Logic (PAL).	ommon Cathod

3.	Practical
1	Study of BJT Characteristics
2	Study of CE Amplifier
3	Study of RC Coupled / Tuned Amplifier
4	Study of FET Characteristics

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

5	Study of Diode Clipper Circuits
6	Study of Diode Clamper Circuits
7	Study and Implement RC Low Pass and High Pass Filter Circuits
8	Study and Implement RC Integrator Circuits
9	Study and Implement RC Differentiator Circuits
10	Full and Half-Adder/ Half-subtarctor Circuits using a serial Input
11	4-Bit Gray to Binary/ Binary to Gray Code convertor using Select input
12	Logic expression with the Help of MUX IC 74153
13	Flip-flops using NAND/ NOR Gate
14	Modulo-7 Ripple Counter
15	4-Bit Shift Left/Right Register
16	Sequence Generator

4.	Books Recommended
1	Schilling Donald L. and Belove E., "Electronics Circuits- Discrete and Integrated", 3rd Ed., McGraw-Hill, 1989, Reprint 2008.
2	Millman Jacob, Halkias Christos C. and Parikh C., "Integrated Electronics", 2nd Ed., McGraw-Hill, 2009.
3	Taub H. and Mothibi Suryaprakash, Millman J., "Pulse, Digital and Switching Waveforms", 2nd Ed., McGraw-Hill, 2007.
4	Mano Morris, "Digital Logic and Computer Design", 5th Ed., Pearson Education, 2005.
5	Lee Samual, "Digital Circuits and Logic Design", 1st Ed., PHI, 1998.
ADD	ITIONAL REFERENCE BOOKS
1	Malvin Albert & David J. Bates, "Electronic Principles", 7th edition, Tata McGraw Hill, 2007.
2	De Debashis, "Basic of Electronics", 1st Ed., Pearson Education, 2008.
3	Floyd and Jain, "Digital Fundamentals", Pearson Education, 2006.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

B.Tech.1 /M.Sc. 1 Semester I/ II INDIAN VALUE SYSTEM AND SOCIAL CONSCIOUSNESS	Scheme	L	Т	P	Credit
HS120		2	0	0	02

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	interpret the important values that need to be cultivated
CO2	analyse the cultures depicted in Ramayana, Mahabharata, Jainism and Buddhism
CO3	review the structure of Indian knowledge system
CO4	discuss the significance of constitution of India
CO5	demonstrate social responsibility

2.	Syllabus	
	HUMAN VALUES AND CONSCIOUSNESS	(08 Hours)
	Human Values Definition and Classification of Values; The Problem of Hierarchy their Choice; Self-Exploration; 'Basic Human Aspirations; Right understanding and Physical Facility; fulfilment of aspirations; Understanding Happiness a Harmony at various levels. What Is Consciousness?; Can We Build A Conscious Machine?; Levels Of Conscious Matter And Beyond; Holistic Lifestyle; Dealing With Anxiety; Connecting Mind To Brains, And Programs.	g, Relationship nd Prosperity, ousness; Mind,
	INDIAN CULTURE AND HERITAGE	(07 Hours)
	Culture and its salient features: The Vedic – Upanishadic Culture and so aspirations in those societies; Culture in Ramayana and Mahabharata: The I Woman, Concepts Maitri, Karuna, Seela, Vinaya, Kshama, Santi, Anuraga – as the stories and anecdotes of the Epics; The Culture of Jainism: Jaina conception and liberation, Buddhism as a Humanistic culture; The four Noble truths of Budd and Indian Culture;	deal Man and exemplified in of Soul, Karma
	INDIAN KNOWLEDGE SYSTEM	(08 Hours)
	Indian knowledge as a unique system, Place of Indian knowledge in mankir Relevance of Indian knowledge to present day and future of mankind, Nar Knowledge; Structure of Indian Knowledge: Types of knowledge (para, apara) and the unscientific, Instruments for gaining and verifying knowledge, Knowle Lineages, Instruments - debate, epistemology and pedagogy, The inverted tred deductive, empirical knowledge, and evolution of knowledge; Disciplines of	ture of Indian , The scientific dge traditions: e – axiomatic,

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

B.Tech. Artificial Intelligence

outline of the subjects, the major contributions and theories along with tir relevant: Mathematics; Astronomy; Physical Sciences; Cosmogony; Lang Astrology; Moral studies/righteousness; Statecraft and political philosophy	
INDIAN CONSTITUTION	(04 hours)
History of Making of the Indian Constitution; Philosophy of the Indian Constitut Salient Features; Contours of Constitutional Rights & Duties; Organs of Parliament; Composition; Qualifications and Disqualifications; Powers and Fundament	Governance:
SOCIAL RESPONSIBILITY	(03 Hours)
Social Responsibility: Meaning and Importance, Different Approaches of Social Social Responsibility of Business towards different Stakeholders. Evolution and CSR in India.	•
(Total Contact Ti	me: 30 Hours)

3.	Books Recommended
1	D. K. Chaturvedi, Professional Ethics Values and Consciousness, Ane Books Pvt. Ltd., 2023.
2	R.R. Gaur, R Sangal, G. P. Bagaria, Human Values and Professional Ethics, Excel Books, New Delhi, 2010.
3	A.N. Tripathi, Human Values, New Age Intl. Publishers, New Delhi, 2004.
4	P R Rao, Indian Heritage and Culture, Sterling Publishers Pvt. Ltd, 1988.
5	D. Singh, Indian Heritage and Culture, APH Publishing Corporation, 1998.
6	Sri Prashant Pole, Treasure Trove of Indian knowledge, Prabhat Prakashan, 2021.
7	Sri Suresh Soni, Sources of our cultural heritage, Prabhat Prakashan, 2018.
8	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)