Details of Professor Ravipudi Venkata Rao

Personal data:

Surname: Ravipudi

Name: Venkata Rao
Date of birth: 04-07-1967

Citizenship: India

Address for Correspondence:

Dr. Hab. Ravipudi Venkata Rao
Professor (Higher Administrative Grade)
Department of Mechanical Engineering
Sardar Vallabhbhai National Institute of Technology (SV NIT)
{An Institute of National Importance of Government of India}
Ichchanath, Surat-395 007, Gujarat State, INDIA.
Phone: +91 9925207027 (Cell); +91 2612201921 (R); +91 2612201773 (O)

E-mail: rvr@med.svnit.ac.in; ravipudirao@gmail.com

Education:

i) Education, name of the university and year of graduation:

D.Sc., Cracow University of Technology (Politechnica Krakowska), Cracow, Poland, 2017. Degree: D.Sc.

Academic title: Habilitation (D.Sc. in Technical Sciences)

<u>Habilitation (D.Sc.) thesis:</u> Applications of advanced optimization algorithms to selected problems of thermal engineering; Prof. Hab. Jan Taler (Mentor), Cracow University of Technology, Cracow, Poland, 2017.

ii) Education, name of the university and year of graduation:

Ph.D., B.I.T.S. Pilani, Rajasthan, India, 2002.

Degree: Ph.D.

Academic title: Ph.D. (Mechanical Engineering)

<u>Ph.D. thesis:</u> Machinability evaluation, cutting fluid selection, and failure analysis of machine tools using graph theory and matrix approach; Prof. O. P. Gandhi (Supervisor), IIT Delhi, New Delhi, 2002.

iii) Education, name of the university and year of graduation:

M. Tech., Banaras Hindu University (IIT-BHU now) Varanasi, U.P., India, 1991.

Degree: M. Tech.

Academic title: M. Tech. (Mechanical Engineering)

(iv). Education, name of the university and year of graduation:

B. Tech., Nagarjuna University, A.P., India, 1988.

Degree: B.Tech.

Academic title: B. Tech. (Mechanical Engineering)

Teaching/Research Experience: 32 years (Out of 32 years, nearly

17 years as Professor)

Listed in Top 2% of Most Influential Scientists

A new ranking from <u>Stanford University</u> published in 2022 featured the world's top 2% of most influential scientists from all areas. This list, compiled using Scopus citation information, is largely considered to be the most prestigious of its type. Professor John PA Loannidis and his research team at Stanford University compiled it. Please refer to the link (https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/4).

I was listed in the "Career-long Citation Impact" as well as in "Single Year" categories under "Engineering" field in the sub-field-2 of "Industrial Engineering & Automation" (sub-field-1: "Artificial Intelligence & Image Processing"). I was placed at 181st position out of 546033 authors in sub-field-1. My name can be located as "Rao, Ravipudi Venkata".

Administrative Positions Held at SVNIT, Surat:

- Director (Incharge): 8 months (24thOctober 2021 29thJune 2022)
- Dean (Faculty Welfare): 3 years (September 2018-September 2021)
- Dean (Academic): 1 year (June 2013-June 2014)
- Head (Dept. of Mech. Engg.): 3 years (January 2007-January 2010)
- Coordinator, QIP Centre: 3 years
- Professor Incharge (Central Library): Since 16th September 2021

Scientometric Indicators:

No. of Research Papers Published: More than 375

	H-index	No. of Citations (as on 31/07/2023)
Google Scholar	68	23392
Scopus (Author ID: 12764013600)	56	15186

Details of research papers are available at the following links:

Google Scholar

https://scholar.google.com/citations?hl=en&user=4NoqGCEAAAAJ&view_op=list_works
Scopus

https://www.scopus.com/authid/detail.uri?authorId=12764013600

Areas of Research Interest:

Applications of Artificial Intelligence and Advanced Intelligent Optimization Techniques in Mechanical Engineering {(i).Thermal Engineering, (ii). Manufacturing and Industrial Engineering, and (iii).Mechanical Design}. These techniques can be used in any discipline of engineering and sciences.

In addition, fuzzy multi-attribute decision making methods and their engineering applications is another area of my research interests.

Students who are interested to do their <u>Ph.D.</u> theses or <u>M.Tech.</u> dissertation <u>works</u> in the above research areas may contact me.

Significant Research Contribution:

My main area of research is "Intelligent Single and Multi-Objective Optimization Algorithms and Their Engineering Applications". I have to my credit five innovative and novel advanced optimization algorithms named as (i). Teaching-Learning-Based Optimization (TLBO) algorithm (developed in 2011), (ii). Jaya Algorithm (developed in 2016), (iii). Three Rao algorithms (2020), and a multi-attribute decision making method named as "R-method" (developed in 2021).

The main limitation of the existing advanced optimization algorithms is that different algorithm-specific parameters are to be tuned for proper working of the algorithms. Improper tuning may lead to local optimum or inferior solution. Therefore, I (and myresearch scholars) had developed TLBO, Jaya and Rao algorithms which are free from the algorithm-specific parameters and hence no tuning is required and designer's burdenis reduced. These algorithms are very simpler and converge to the optimum solution veryfast and the computational efforts required are comparatively less. These algorithms can be efficiently used for single as well as multi- and many-objective designoptimization of various types of systems, products, processes and systems.

The TLBO, Jaya, and Rao algorithms have proved their effectiveness and superiority over the other competing optimization algorithms. These algorithms have gained wide acceptance by the optimization research community in different engineering and science disciplines such as mechanical design, thermal engineering, manufacturing engineering, electrical engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics, biotechnology, etc. More than 15000 research papers have been published so far in reputed international journals by various researchers based on these algorithms.

In addition to the above, I have worked on "Fuzzy Multi-Criteria Decision-Making Methods and Their Engineering Applications". A number of MCDM methods have been applied by me to the decision-making problems of the manufacturing and industrial engineering environment. A new MCDM method named as "R-method" was proposed by me recently in 2021 and it is also gaining popularity now.

I had authored more than 375 research papers published in international journals and conference proceedings out of which more than 160 papers were published in SCI and Scopus indexed journals. Seven (07) books based on my research works were published by Springer. In addition, three (03) edited proceedings were also published by Springer.

Visiting Professor Assignments Abroad:

- 1. Deputed by the Ministry of Education (MoE) of the Government of India to Asian Institute of Technology, Bangkok, **Thailand**, as a Visiting Professor <u>four times</u>, each time for a semester duration (January-May 2008, August-December 2010, January-May 2015, and January-May 2018).
- 2. Acted as a Visiting Professor at Politechnica Krakowska (Cracow University of Technology, Cracow), Poland, <u>six times</u>, each time for 15 days (in January 2016, October 2016, June 2018, May 2019, December 2019, and October 2022).
- 3. Acted as a Visiting Professor at Birla Institute of Technology and Science, Dubai, UAE for 6 months (June December 2017).

Editorship of International Journals (Editor/Associate Editor/Editorial Board Member):

Editor/	Editoriai Board Member):
	Editorship of International Journals
1.	Energy (Elsevier), (Editorial Board Member (equivalent to Associate
	Editor of other journals)), ISSN: 1855-6531 (covered by Clarivate
	Analytics, Impact Factor 2022: 9.0).
2.	Applied Soft Computing, Elsevier, USA (Editorial Board Member
	(equivalent to Associate Editor of other journals)), ISSN: 1568-4946
	(covered by Clarivate Analytics, Impact Factor 2022: 8.7).
3.	Computational Design and Engineering, Oxford University Press
	(Editorial Board Member), ISSN: 2288-5048 (covered by Clarivate
	Analytics, Impact Factor 2022: 4.9).
4.	International Journal of Intelligent Computing and Cybernetics,
	Emerald, USA (Editorial Board Member), ISSN: 1756-378X (covered
	by Clarivate Analytics, Impact Factor 2022: 4.3)
5.	Journal of Advances in Production Engineering Management, University
	of Maribor, Slovenia (Editorial Board Member) ISSN: 1854-6250
	(covered by Clarivate Analytics, Impact Factor 2022: 3.419).
6.	The International Journal of Advanced Manufacturing Technology,
	Springer Science+Business Media, London (Editorial Board Member),
	ISSN: 0268-3768 (covered by Clarivate Analytics, Impact Factor
	2022: 3.4).
7.	International Journal of Industrial Engineering Computations, Growing
	Science Publishers, Canada (Editorial Board Member), ISSN: 1923-
	2934 (covered by Clarivate Analytics, Impact Factor 2022: 3.3)
8.	Engineering Optimization, Taylor & Francis, UK (Editorial Board
	Member), ISSN: 0305-215X (covered by Clarivate Analytics,
	Impact Factor 2022: 2.7)
9.	Scientia Iranica: International Journal of Science and Technology,
	Sharif University of Technology, Iran (Mechanical Engineering
	Editorial Board Member), ISSN: 1026-3098 (covered by Clarivate
	Analytics, Impact Factor 2021: 1.416)

10.	Journal of Advanced Manufacturing Systems, World Scientific
	Publishers, USA (Editorial Board Member), ISSN: 0219-6867
	(covered by Clarivate Analytics, Impact Factor 2022: 1.4)
11.	Archives of Thermodynamics, Poland (Editorial Board Member), ISSN:
	1231-0956 (covered by Clarivate Analytics, Impact Factor 2022:
	0.9)
12.	International Journal of Engineering Project, Production Management,
	NUS Singapore, (Editor), ISSN : 2221-6529 (covered by Scopus).
13.	International Journal of Materials, Manufacturing and Mechanical
	Engineering, IGI Publishers, USA (Editorial Board Member), ISSN:
	2156-1680 (covered by Scopus)
14.	Decision Science Letters, Growing Science Publishers, Canada
	(Editorial Board Member), ISSN: 1929-5812 (covered by Scopus)
15.	International Journal of Research in Industrial Engineering, Iran
	(Member, Editorial Board), ISSN: 1925-7505
16.	International Journal of Applied Evolutionary Computation, IGI Global
	Publishers, USA (Associate Editor), ISSN: 1942-3594
17.	Advances in Robotics Research, An International Journal, Techno-
	Press Publishers, Daejeon, South Korea (Editorial Board Member),
	ISSN: 2287-4976
18.	Technology Audit and Production Reserves (Ukrainian Journal
	published in English), (Editorial Board Member), ISSN: 2664-9969,
	2020.
19.	International Journal of Industrial Optimization, Indonesia (Editorial
	Board Member), ISSN: 2156-1680
20.	Systems and Soft Computing Journal, Elsevier, USA (Editorial Board
	Member), ISSN: 2666-2221(a new journal of Elsevier).

Books Authored: 07; Edited Proceedings: 03

5.No.	Title	Author's Name	Publisher	Year of Publication
	Decision Making in the Manufacturing Environment Using Graph theory and Fuzzy Multiple Attribute Decision Making Methods		Springer Verlag, UK	2007
2	Advanced Modeling and Optimization of Manufacturing Processes: International Research and Development		Springer Verlag, UK	2011
	Mechanical Design Optimization Using Advanced OptimizationTechniques		Springer Verlag, UK	2012
4	Decision Making in the	R. Venkata Rao	Springer Verlag, UK	2013

5	Manufacturing Environment Using Graph theory and Fuzzy Multiple Attribute Decision Making Methods (Volume-2)		Chair and Chair	2014
<u>. </u>	Teaching-learning-based optimization and its engineering applications	R. Venkata Rao	Springer, Cham, Switzerland	2016
6	Jaya: An advanced optimization algorithm and itsengineering applications		Springer Nature, Switzerland	2018
7	Design optimization of renewable energy systems using advanced optimization algorithms	H. S. Keesari	Springer Nature, Switzerland	2022
8	Edited Proceedings: Advanced Engineering Optimization Through Intelligent Techniques	J. Taler	Springer Nature, Singapore	2019
9	Edited Proceedings: Intelligent Computing Applications for Sustainable Real-World Systems		Springer Nature, Singapore	2020
10	Edited Proceedings: Advanced Engineering Optimization Through Intelligent Techniques-2022	J. Taler	Springer Nature, Singapore	2022

- No. of sponsored projects completed: 05 (FIST:1, DST-International Division: 2 (with Austria and Slovenia), GUJCOST Gandhinagar: 1; CSIR: 1)
- No. of bilateral workshops conducted: 02 (Funded by DST-International Division (conducted in India and Russia with Novosibirsk State Technical University, Russia).
- No. of Ph.D. students supervised: 17 awarded; 3 ongoing
- No. of M. Tech. students supervised: 61

Significant Awards/Prizes Received:

S.No.	Name of Award	Awarding Agency	Year	
1	Maharashtra State National Award for the best Research work done by teachers of Engg. Colleges for the year 2020.	Technical Education		
2	M. P. Baya "National Award" for Advancement of Technology in Mechanical Engineering for the year 2014.	(India), Kolkata, India	2014	
3	Most Cited Award for 2013	Elsevier, The Netherlands	2013 and	

	and 2014 (Computer Aided Design journal).	2014
4	Fellowship.	Indian Institution of 2012
		Industrial Engineering
		(IIIE), Navi Mumbai, India
5	National Award for the year 2001	Indian Society for 2001
	for Best Research Work Done.	Technical Education
		(ISTE), New Delhi, India

No. of One-Week Short-Term Training Programs (STTPs) Organized: 32

These 32 programs are based on advanced intelligent optimization techniques, fuzzy decision-making methods and AI.

International Conferences/Workshops Organized:

International Conferences:

- Fourth International Conference on Advanced Engineering Optimization Through Intelligent Techniques held at SVNIT Surat during 28-30 September 2023
- Third International Conference on Advanced Engineering Optimization Through Intelligent Techniques held at SVNIT Surat during 29-31 January 2022
- Second International Conference on Advanced Engineering Optimization Through Intelligent Techniques held at SVNIT Surat during 03-05 August 2018
- International Conference on Advanced Engineering Optimization Through Intelligent Techniques held at SVNIT Surat during 01-03 July 2013
- Fifth International Conference on Advances in Mechanical Engineering (ICAME) held at SVNIT Surat during 06-08 June 2011
- Fourth International Conference on Advances in Mechanical Engineering (ICAME) held at SVNIT Surat during 23-25 September 2010
- Third International Conference on Advances in Mechanical Engineering (ICAME 2010) held at SVNIT Surat during 4-6 January 2010
- Second International Conference on Advances in Mechanical Engineering (ICAME 2009) held at SVNIT Surat during 3-5 August 2009
- International Conference on Advances in Mechanical Engineering (ICAME 2008)
 held at SVNIT Surat during 15-17 December 2008

International Workshops:

• <u>Indo-Russian Joint Research Workshop</u>: on "Computational Intelligence and Modern Heuristics on Automation and Robotics"

Funding Agency: DST, India & RFBR, Russia

Co-Coordinator: Prof. Vadim Zhmud, Novosibirsk State TechnicalUniversity, Russia

The Workshop was held successfully during 20-22 September 2010

• <u>Second Russian-Indian Joint Research Workshop</u>: on "Computational

Intelligence and Modern Heuristics on Automation and Robotics"

Funding Agency: DST, India & RFBR, Russia

Co-Coordinator: Prof. Vadim Zhmud, Novosibirsk State Technical

University, Russia
The joint Workshop was held successfully during 10-13 September 2011.

Countries Visited:

Czech Republic, Hong Kong, Singapore, Ukraine, Russia, Austria, Germany, Turkey, Thailand, South Korea, Slovenia, Poland, UAE, Switzerland, and Italy.

Reviewer of International Journals: More than 70

- 1. Applied Thermal Engineering, Elsevier
- 2. Heat and Mass Transfer, Springer
- 3. International Journal of Heat and Mass Transfer, Elsevier
- 4. Energy, Elsevier
- 5. Applied Energy, Elsevier
- 6. International Journal of Refrigeration, Elsevier
- 7. International Journal of Numerical Methods for Heat and Fluid Flow, Emerald Insight
- 8. International Journal of Electrical Power and Energy Systems, Elsevier
- 9. Chemical Engineering Research and Design, Elsevier
- 10. International Journal of Thermal Sciences, Elsevier
- 11. International Journal of Systems Science, Taylor & Francis
- 12. Asia-Pacific Journal of Chemical Engineering, Wiley
- 13. Neural Computing and Applications, Springer
- 14. Engineering Optimization, Taylor & Francis
- 15. Information Sciences, Elsevier
- 16. Engineering Applications of Artificial Intelligence, Elsevier
- 17. Applied Mathematics and Computation, Elsevier
- 18. Structural and Multidisciplinary Optimization, Springer
- 19. Applied Soft Computing, Elsevier, USA
- 20. Journal of King Saud University-Computer and Information Sciences, Elsevier
- 21. International Journal of Applied Evolutionary Computation, IGI Global
- 22.Optimal Control, Applications and Methods, Wiley
- 23. International Journal of Decision Sciences, Elsevier
- 24. International Journal of Approximate Reasoning, Elsevier
- 25. National Academy of Sciences, India Section A: Physical Sciences, Springer
- 26. International Journal of Mechanics of Time-Dependant Materials, Springer
- 27. Applied Mathematical Modelling, Elsevier
- 28 Decision Support Systems and Technology, Elsevier
- 29. Research in Engineering Design, Springer
- 30. The Arabian Journal for Science and Engineering, Springer
- 31. IET Generation, Transmission & Distribution, Taylor & Francis
- 32. Finite Elements in Analysis and Design, Elsevier
- 33. Science China Information Sciences, Elsevier
- 34. Scientia Iranica, Elsevier
- 35. Journal of Zhejiang University-SCIENCE A, China, Elsevier

- 36. Machining Science & Technology, Taylor & Francis
- 37. IIE Transactions-Design & Manufacturing, Taylor & Francis
- 38. International Journal of Production Research, Taylor & Francis
- 39. International Journal of Engg. Tribology, IMechE
- 40. International Journal of Advanced Manufacturing Technology, Springer
- 41. Journal of Optical Communications, Taylor & Francis
- 42.International Journal of Robotics& Computer Integrated Manufacturing, Elsevier
- 43. International Journal of Machining and Machinability of Materials, Inderscience.
- 44. International Journal of Materials & Product Technology, Inderscience
- 45. International Journal of Mechatronics and Manufacturing Systems, Inderscience
- 46. Surface Review and Letters, World Scientific
- 47. Journal of Indian Institute of Science (IISc), Bangalore
- 48. Journal of Materials Processing Technology, Elsevier
- 49. Journal of Engineering Manufacture, IMechE, SAGE Publishers
- 50. Journal of Mechanical Engineering Sciences, IMechE, SAGE Publishers
- 51. Journal of Engineering Tribology, IMechE, SAGE Publishers
- 52. Journal of Materials Engineering and Performance, Taylor & Francis
- 53. International Journal of Vehicle Design, Inderscience
- 54. International Journal of Computers & Industrial Engineering, Elsevier
- 55. International Journal of Mathematical and Computer Modeling, Elsevier
- 56. International Journal of Management Research News
- 57. ASME Journal of Mechanical Design, ASME, USA
- 58. International Journal of Production Research, Taylor & Francis
- 59. European Journal of Industrial Engineering, Inderscience
- 60. International Journal of Manufacturing Research, Inderscience
- 61. International Journal of Operational Research, Inderscience
- 62. Journal of Intelligent Manufacturing, Springer
- 63. International Journal of Decision Support Systems and Technology, IGI Global, USA
- 64. International Journal of Information Technologies and Systems Approach, IGI Global, USA
- 65. International Journal of Industrial Engineering Computations, Growing Science, Canada
- 66. SME-Journal of Manufacturing Systems, Elsevier
- 67. International Journal of Enterprise Network Management, Inderscience
- 68. Grey Systems: Theory and Application, Emerald Insight
- 69. Heat and Mass Transfer, Springer, UK
- 70.International Journal of Intelligent Computing and C7ybernetics, Emerald Publishing, USA

Ft	-							

Training Programs Attended Outside India (selected and deputed by the Ministry of Human Resource Development (Ministry of Education), Government of India, New Delhi:

- Participated in the "Leadership for Academicians Program (LEAP)" of the Ministry of Human Resource Development, New Delhi, organized by IIT Bombay at Mumbai for 2 weeks and at NTU Singapore for 1 week in 2019.
- Institute of Technical Education, Ministry of Foreign Affairs, Singapore (on TVET programme for Principals and Instructors during 7-11 March 2011)
- SIVAT, Seoul, South Korea (on PPCP in technical and vocational education and training during 7-15 September 2009)
- National Institute of Education of Nanyang Technological University, Singapore (on Enhancing Pedagogy Skills for Teacher Trainers during 7-13 October 2008)

List of 50 <u>Representative Papers</u> Published in SCI Journals <u>During Last 5 Years</u>:

For complete list, the following links may be referred to:

Google Scholar

https://scholar.google.com/citations?hl=en&user=4NoqGCEAAAAJ&view_op=list_works
Scopus

https://www.scopus.com/authid/detail.uri?authorId=12764013600

S. No.	Title	Authors	Name of Journal	Volume	Issue	Pages	Year
1.	Dimensional synthesis of four-bar mechanisms using Rao algorithms and their variants.	RV Rao, RB Pawar	Applied Soft Computing	132	https://d oi.org/10. 1016/j.as oc.2022.1 09839	109839 (1-26)	2023
2.	A comprehensive review on Jaya optimization algorithm.	LSA da Silva, YLS Lúcio, LS Coelho, VC Mariani, RV Rao	Artificial Intelligenc e Review	56	5	4329- 4361	2023
3.	Improved Rao algorithm: a simple and effective algorithm for constrained mechanical design optimization problems.	RV Rao, RB Pawar	Soft Computing	27	7	3847- 3868	2023

4.	Elitist Rao algorithms and R-method for optimization of energy systems.	RV Rao, HS Keesari, J Taler, P Oclon, D Taler	Heat Transfer Engineerin g	44	11-12	926- 950	2023	
5.	Solar assisted heat engine systems: Multi-objective optimisation and decision making.	RV Rao, HS Keesari	Internatio nal Journal of Ambient Energy	43	1	149-175	2022	
6.	Design Optimization of Selected Mechanical Engineering Components using Variants of Rao Algorithms.	RV Rao, N Zinzuvadia	Jordan Journal of Mechanical & Industrial Engineerin g	16	-	835- 863	2022	
7.	Design optimization of shell-and- tube heat exchanger using Rao algorithms and their variants.	RV Rao, M Majethia	Thermal Science and Engineerin g Progress	36	https://d oi.org/10. 1016/j.ts ep.2022.1 01520	101520	2022	
8.	An adaptive multilevel thresholding method with chaotically-enhanced Rao algorithm.	Y Olmez, A Sengur, GO Koca, RV Rao	Multimedia Tools and Application s	•	https://doi.org/10.10 07/s11042-022- 13671-9		2022	
9.	Design optimization of cam- follower mechanisms using Rao algorithms and their variants.	RV Rao, RB Pawar	Evolutionar Y Intelligenc e	https://doi.org/10.10 07/s12065-022- 00750-x		1-26	2022	
10.	Optimal design of dome structures with recently developed	T Dede, B Atmaca, M Grzywinski, RV Rao	Structures	42	https://d oi.org/10. 1016/j.ist ruc.2022. 06.010	65-79	2022	

		Γ		T	T	T	
	algorithm: Rao						
11.	series. Inverse problem for dynamic structural health monitoring based on slime mould algorithm.	S Tiachacht, S Khatir, CL Thanh, RV Rao, S Mirjalili, M Abdel Wahab	Engineerin g with Computers	38	3	2205- 2228	2022
12.	Path synthesis of a four-bar linkage using a teaching-learning-based optimization algorithm.	GG Waghmare, RV Rao, PC Kulkarni	Internatio nal Journal for Computatio nal Methods in Engineerin g Science and Mechanics	24	https://d oi.org/10. 1080/155 02287.20 22.20428 69	40-51	2022
13.	A variable velocity strategy particle swarm optimization algorithm (VVS-PSO) for damage assessment in structures.	MH Le, S Khatir, RV Rao, M Abdel Wahab, TC Le	Engineerin g with computer	https://do 07/s00366 01451-2	_	-	2022
	Ranking of Pareto- optimal solutions and selecting the best solution in multi-and many- objective optimization problems using R- method.	RV Rao, RJ Lakshmi	Soft Computing Letters	3	https://d oi.org/10. 1016/j.so cl.2021.1 00015	100015	2021
15.		A Taheri, K RahimiZadeh , RV Rao	Informatio n Sciences	576	https://d oi.org/10. 1016/j.ins .2021.06. 064	68-104	2021

	solving global optimization						
16.	problems. Rao algorithms for multi- objective optimization of selected thermodynami c cycles.	RV Rao, HS Keesari	Engineerin g with Computers	37	4	3409- 3437	2021
17.	A self-adaptive population Rao algorithm for optimization of selected bio-energy systems.	RV Rao, HS Keesari	Journal of Computatio nal Design and Engineerin g	8	1	69-96	2021
18.	Review on dam and reservoir optimal operation for irrigation and hydropower energy generation utilizing metaheuristic algorithms.	KL Chong, SH Lai, AN Ahmed, WZW Zaafar, RV Rao, M Sherif, A Sefelnasr, A El-Shafie	IEEE Access	9	https://1 0.1109/A CCESS.2 021.3054 424	19488- 19505	2021
19.	•	P Ocłoń, M Rerak, RV Rao, P Cisek, A Vallati, D Jakubek, B Rozegnał	Energy	215	https://d oi.org/10. 1016/j.en ergy.202 0.119089	119089	2021
20.	R-method: A simple ranking method for multi-attribute decision-making in the industrial environment.	R Rao, J Lakshmi	Journal of Project Manageme nt	6	4	223- 230	2021
21.	Parallel implementatio n of metaheuristic s for optimizing tool path computation on CNC machining.	H Rico- Garcia, JL Sanchez- Romero, HM Gomis, RV Rao	Computers in Industry	123	https://d oi.org/10. 1016/j.co mpind.20 20.10332 2	103322	2020

22.	Quasi-	RV Rao, RB	Journal of	7	6	830-	2020
	oppositional- based Rao algorithms for multi- objective design optimization of selected heat sinks.	Pawar	Computational Designand Engineering	,		863	
23.	The size optimization of steel braced barrel vault structure by using Rao-1 algorithm.	D Tayfun, M Grzywiński, RV Rao, B Atmaca	Sigma Journal of Engineerin g and Natural Sciences	38	3	1415- 1425	2020
24.	Multi-spark numerical simulation of the micro- EDM process: an extension of a single- spark numerical study.	M Singh, P Saxena, J Ramkumar, RV Rao	The Internatio nal Journal of Advanced Manufactu ring Technology	108	https://d oi.org/10. 1007/s00 170-020- 05566-6	2701- 2715	2020
25.	Constrained design optimization of selected mechanical system components using Rao algorithms.	RV Rao, RB Pawar	Applied Soft Computing	89	https://d oi.org/10. 1016/j.as oc.2020.1 06141	106141	2020
	Design optimization of heat exchangers with advanced optimization techniques: a review.	RV Rao, A Saroj, P Ocloń, J Taler	Archives of Computatio nal Methods in Engineerin g	27	2	517-548	2020
27.	Self-adaptive multi- population Rao algorithms for engineering design optimization.	RV Rao, RB Pawar	Applied Artificial Intelligenc e	34	3	187-250	2020
28.	Prediction of effects of process	AG Kamble, RV Rao	Internatio nal Journal of	34	2	148-173	2020

	parameters		Manufactu				
	and thermo-		ring				
	mechanical		Technology				
	simulation of		and				
	GMAW		Manageme				
	process for		nt				
	welding of		""				
	AISI 430						
29.	steel.	DVD	T. 1 11	11	4	107 120	2020
29.	Rao	RV Rao	Internatio	11	1	107-130	2020
	algorithms:		nal Journal				
	Three		of				
	metaphor-less		Industrial				
	simple		Engineerin				
	algorithms for		9				
	solving		Computatio				
	optimization		ns				
	problems.						
30.		RV Rao, HS	Engineerin	36	1	391-419	2020
	multi-team	Keesari, P	g with				
	perturbation-	Oclon, J	Computers				
	guiding Jaya	Taler	2 2				
	algorithm for	Tarei					
	optimization						
	and its						
21	applications.		TEEE	7	1.44 / /4	122022	2010
31.	Comparison of	H Rico-	IEEE	7	https://1	133822-	2019
	high	Garcia, JL	Access		0.1109/A	133831	
	performance	Sanchez-			CCESS.2		
	parallel	Romero, A			019.2941		
	implementatio	Jimeno-			086		
	ns of TLBO	Morenilla, H					
	and JAYA	Migallon-					
	optimization	Gomis, H					
	methods on	Mora-Mora,					
	manycore	RV Rao					
	GPU.						
32.	Experimental	M Singh, J	Advances	14	2	251-263	2019
	investigation	Ramkumar,	in		_		
	and multi-	RV Rao, J					
	objective	Balic					
	-	Build	Engineerin q &				
	optimization		3				
	of micro-wire		Manageme				
	electrical		nt				
	discharge						
	machining of a						
	titanium alloy						
	using Jaya						
	algorithm.						
33.	An elitism-	RV Rao, A	Soft	23	12	4383-	2019
	based self-	Saroj	Computing			4406	
	adaptive						
	multi-						
	population						
	Jaya						
1		I		I	Ī	Ī	l l

	االانسوال						
	algorithm and						
	applications.						
34.		RV Rao, DP	Journal of	30	5	2101-	2019
	objective	Rai, J Balic	Intelligent		3	2127	2017
	optimization	riai, o bane	Manufactu				
	of abrasive		ring				
	waterjet						
	machining						
	process using						
	Jaya						
	algorithm and						
	PROMETHEE						
25	Method.						
35.		RV Rao, HS	Journal of	11	2	025903	2019
	multi-	Keesari, P	Renewable				
	objective	Oclon, J Taler	and Sustainabl				
	Jaya optimization	i aler	e Energy				
	algorithm for		e theigy				
	a solar dish						
	Stirling						
	engine.						
36.	Multipopulatio	H Migallon,	The	75	3	1697-	2019
	n-based multi-	A Jimeno-	Journal of			1716	
	level parallel	Morenilla,	Supercomp				
	enhanced	JL Sanchez-	uting				
	Jaya	Romero, H					
37.	algorithms. Usage of	Rico, RV Rao	C	2	1	1-17	2019
37.	Usage of optimization	T Dede, M Kripka, V	Current Trends in	۷	1	1-1/	2019
	techniques in	Togan, V	Civil &				
	civil	Yepes, RV	Structural				
	engineering	Rao	Engineerin				
	during the last		g				
	two decades.						
38.	Efficient	A García-	Electronics	8	1	19	2018
	subpopulation	Monzó, H					
	based parallel	Migallón, A					
	TLBO	Jimeno-					
	optimization	Morenilla,					
	algorithms.	JL Sánchez- Romero, H					
		Romero, H Rico, RV Rao					
39.	A Posteriori	RV Rao, A	IEEE	7	https://1	4113-	2018
	Multiobjectiv	Saroj, P	Access	•	0.1109/A	4134	
	e Self-	Oclon, J			CCESS.2		
	Adaptive	Taler, J			018.2885		
	Multipopulatio	Lakshmi			823		
	n Jaya						
	Algorithm for						
	Optimization						
	of Thermal						
	Devices and						
	Cycles.						

		1		1	T	r	
40.	Multi- objective optimization of machining and micro- machining processes using non- dominated sorting teaching- learning- based optimization algorithm.	RV Rao, DP Rai, J Balic	Journal of Intelligent Manufactu ring	29	8	1715- 1737	2018
41.	Multi-team perturbation guiding Jaya algorithm for optimization of wind farm layout	RV Rao, HS Keesari	Applied Soft Computing	71	https://d oi.org/10. 1016/j.as oc.2018.0 7.036	800-815	2018
42.	Single-and multi- objective design optimization of plate-fin heat exchangers using Jaya algorithm.	RV Rao, A Saroj, P Ocloń, J Taler, D Taler	Heat Transfer Engineerin g	39	13-14	1201- 1216	2018
43.	Constrained economic optimization of shell-and-tube heat exchangers using a self-adaptive multipopulation elitist-jaya algorithm.	RV Rao, A Saroj	Journal of Thermal Science and Engineerin g Application s	10	4	-	2018
44.	Design optimization of heat pipes using elitism- based self- adaptive multipopulatio n Jaya algorithm.	RV Rao, A Saroj, S Bhattachary ya	Journal of Thermophy sics and Heat Transfer	32	3	702-712	2018
45.	Multi- objective design	RV Rao, A Saroj	Energy Systems	9	2	305-341	2018

							1
1	optimization						
	of heat						
	exchangers						
	using elitist-						
	Jaya						
	algorithm.						
46.	Optimum	RV Rao, G	Advances	2	1	13-31	2018
	static	Waghmare	in robotics				
	balancing of a		research				
	robot						
	manipulator						
	using TLBO						
	algorithm.						
47.	Experimental	TS Rajesh,	Internatio	9	4	257-	2018
	investigation	RV Rao	nal Journal			278	
	and parameter		of				
	optimisation		Materials				
	of Al2O3-		Engineerin				
	40% TiO2		9				
	atmospheric		Innovation				
	plasma spray						
	coating on						
	mild steel						
	substrate.						
48.	Optimization	RV Rao, DP	Materials	5	2	4930-	2018
	of abrasive	Rai, J Balic	Today:			4938	
	waterjet		Proceeding				
	machining		S				
	process using						
	multi-						
	objective jaya						
	algorithm.						
49.	Experimental	TS Rajesh,	Materials	5	2	5012-	2018
	investigation	RV Rao	today:			5020	
	and parameter		proceeding				
	optimization		S				
	of Al2O3-						
	40% TiO2						
	atmospheric						
l I	plasma spray						
l I	coating on						
	SS316 steel						
	substrate.						
	Thermal	P Ocłoń, P	Internatio	123	https://d	162-180	2018
	performance	Cisek, M	nal Journal		oi.org/10.		
	optimization	Rerak, D	of Thermal		1016/j.ijt		
	of the	Taler, RV	Sciences		hermalsci		
l I	underground	Rao, A			.2017.09.		
l l	power cable	Vallati, M			015		
l I	system by	Pilarczyk					
l I	using a						
	modified Jaya						
	algorithm.						