Sardar Vallabhbhai National Institute of Technology (SVNIT) Surat Department of Chemistry Five Years Integrated M.Sc. Chemistry

Sr.	Subject	Code	Scheme	Credits	Notional
No.			L-T-P	(Min.)	hours of
					Learning
					(Approx.)
	First Semester (1 st year of MSc)	1			ſ
1	Stoichiometry, Solutions and Gases	<u>CY101</u>	3-1-2	5	100
2	Atomic Structure and Chemical Bonding	<u>CY103</u>	3-0-2	4	85
3	Qualitative and Quantitative Analysis	<u>CY105</u>	3-0-2	4	85
4	Mathematics for Chemistry	<u>MA121</u>	3-1-0	4	70
5	Physics of Materials and Nuclei	<u>PH111</u>	3-0-0	3	55
6	Indian Value System and Social Consciousness	<u>HS120</u>	2-0-0	2	35
			Total	22	430
7	Vocational Training / Professional Experience	CYV01 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	CYP01			(20 x 10)
	Second Semester (1 st year of MSc)				
1	Fundamentals of Organic Chemistry	<u>CY102</u>	3-1-2	5	100
2	Basic Industrial Chemistry	<u>CY104</u>	3-0-2	4	85
3	Chemistry of s- and p-block Elements	<u>CY106</u>	3-0-0	3	55
4	Fundamentals of Computer and Programming	<u>CS110</u>	3-0-2	4	85
5	English and Professional Communication	<u>HS110</u>	3-1-0	4	70
			Total	20	395
6	Vocational Training / Professional Experience	CYV02 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	CYP02			(20 x 10)
	Third Semester (2 nd year of MSc)				
1	Chemistry of d- and f-block Elements	CY201	3-1-2	5	100
2	Hetero Functional Groups and Heterocycles	CY203	3-0-2	4	85
3	State and Properties of Matter	CY205	3-0-2	4	85
4	Optics	PH205	3-0-2	4	85
5	Quality Control and Quality Assurance	CY207	3-0-0	3	55
			Total	20	410
6	Vocational Training / Professional Experience	CYV03 /	0-0-10	5	200
	(Optional) (Mandatory for Exit)	CYP03			(20 x 10)
	Fourth Semester (2 nd year of MSc)				
1	Coordination and Bioinorganic Chemistry	CY202	3-0-2	4	85
2	Organic Reaction Mechanism	CY204	3-1-2	5	100
3	Equilibrium and Changes	CY206	3-0-2	4	85
4	Dyes and Drugs	CY208	3-0-2	4	85
5	Biomolecules and Cell Biology	CY212	3-0-0	3	55
			Total	20	410
6	Laboratory Demonstration of Quality Control	CYV04 /	0-0-10	5	200
	and Quality Assurance Practical	CYP04			(20 x 10)
	Vocational Training / Professional Experience				
	(Optional) (mandatory for exit)				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

	Fifth Semester (3 rd year of MSc)				
1	Organometallic Chemistry	CY301	3-0-2	4	85
2	Pericyclic Reactions and Photochemistry	CY303	3-0-4	5	115
3	Analytical Chemistry	CY305	3-0-4	5	115
4	Physical Methods of Structure Determination	CY307	3-0-0	3	55
5	Unit Process in Chemical Industries	CY309	3-0-0	3	55
			Total	20	425
6	Purification of Liquids and Solids	CYV05 /	0-0-10	5	200
	Vocational Training / Professional Experience	CYP05			(20 x 10)
	(Optional) (mandatory for exit)				
	Sixth Semester (3 rd year of MSc)	-			
1	Interpretative Molecular Spectroscopy	CY302	3-1-0	4	70
2	Molecules in Motion and Reaction Dynamics	CY304	3-1-2	5	100
3	Polymer Chemistry	CY306	3-0-4	5	115
4	Chemistry in Industries	CY308	3-0-0	3	55
5	Materials Chemistry	CY312	3-0-0	3	55
			Total	20	395
6	Vocational Training / Professional Experience	CYV06 /	0-0-10	5	200
	(Optional) (mandatory for exit)	CYP06			(20 x 10)
	Seventh Semester (4 th year of MSc)				
1	Reaction Mechanism in Coordination	CY401	3-0-4	5	115
	Chemistry				
2	Synthetic Approaches in Organic Chemistry	CY403	3-0-4	5	115
3	Atomic Spectroscopy and Electron Microscopic	CY405	3-1-0	4	70
	Techniques				
4	Computational Chemistry	CY407	3-0-4	5	115
5	Elective	CY4AA	3-X-X	3/4	55/70/85
			Total	22-23	470-500
6	Skill Development on Computational Tools	CYV07 /	0-0-10	5	200
	Vocational Training / Professional Experience	CYP07			(20 x 10)
	(Optional) (mandatory for exit)				
	Eighth Semester (4 th year of MSc)	1	r	r	
1	Symmetry, Spectra and Magnetism	CY402	3-1-0	4	70
2	Chemistry of Natural Products	CY404	3-0-4	5	115
3	Physical Aspects of Molecular Spectroscopy	CY406	3-1-0	4	70
4	Purification and Separation Techniques	CY408	3-0-4	5	115
5	Elective	CY4BB	3-X-X	3/4	55/70/85
			Total	21-22	425-455
6	Skill Development on GMP and GLP	CYV08 /	0-0-10	5	200
	Vocational Training / Professional Experience	CYP08			(20 x 10)
	(Optional) (mandatory for exit)				
	Ninth Semester (5 th year of MSc)				
1	Quantum Chemistry	CY501	3-0-0	3	55
2	Heterocycles and Organic Synthesis	CY503	3-0-0	3	55

Five Years Integrated M.Sc. Chemistry

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

~		0.45.05		•	
3	Research Methodology in Chemistry	CY505	3-0-0	3	55
4	Elective	CY5AA	3-X-X	3/4	55/70/85
5	Elective	CY5BB	3-X-X	3/4	55/70/85
6	Research Training in Chemical Sciences	CYP09	0-0-10	5	200
					(20 x 10)
			Total	20-22	475-535
	Tenth Semester (5 th year of MSc)				
1	Tenth Semester (5 th year of MSc) M.Sc. Dissertation	CYP10	0-0-40	20	800
1	Tenth Semester (5th year of MSc) M.Sc. Dissertation Industrial Internship / Professional Experience	CYP10	0-0-40	20	800 (40 X 20)
1	Tenth Semester (5 th year of MSc) M.Sc. Dissertation Industrial Internship / Professional Experience (Mandatory)	CYP10	0-0-40	20	800 (40 X 20)

Five Years Integrated M.Sc. Chemistry

Sr.	Elective	Code	Scheme
No.			L-T-P
1	Surfactant Chemistry	CY451	3-0-0
2	Chemistry of Nanomaterials	CY452	3-0-0
3	Green Chemical Processing	CY453	3-0-0
4	C-H Functionalization	CY454	3-0-0
5	Catalysis	CY551	3-0-0
6	Medicinal Chemistry	CY552	3-0-0
7	Supramolecular Chemistry	CY553	3-0-0
8	Nuclear Chemistry	CY554	3-0-0

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – I	Scheme	L	Т	Ρ	Credit
STOICHIOMETRY, SOLUTIONS AND GASES		3	1	2	05
CY101					

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Acquire the knowledge of stoichiometric in chemical reactions.
CO2	Memorize the basic theoretical knowledge of solutions and gases.
CO3	Learn the fundamentals of solutions and gases along with their thermodynamics.
CO4	Perform the experiments related to preparation of various solutions of different
	concentrations and estimation of concentrations using titrations.
CO5	Develop expertise in handling of laboratory solutions and glasswares.

2.	Syllabus			
	CHEMICAL REACTIONS & STOICHOMETRY	(10 Hours)		
	Chemical reaction and chemical equation, balanced chemical equations, law of conservation			
	of mass, law of constant composition/definite proportion, law of multiple propo	ortions, Law of		
	reciprocal proportions, Gay-Lussac's law of gaseous volumes, stoichiom	netry and its		
	significance, mole ratio method, chemical equivalence - metathesis and re	dox, chemical		
	formula from percentage composition, molecular formula from empirical for	mula, limiting		
	reagent, reaction yield, stoichiometry and titrations. Numerical problems.			
	SOLUTIONS	(10 Hours)		
	Solution composition, ways of expressing concentration, molarity, molality, no	ormality, mole		
	fraction, solutions of gases in gases, Henry's law, solutions of liquids in liquid	s, solubility of		
	completely miscible liquids, solubility of partially miscible liquids, phenol-w	water system,		
	nicotine-water system, vapour pressures of liquid-liquid mixtures, azeotrop	es, theory of		
	fractional distillation, steam distillation, solutions of solids in liquids, solubility-equilibrium			
	concept, determination of solubility, solubility of solids in solids.			
	GASES	(10 Hours)		
	States of a gas, equation of state, perfect gas law, kinetic model of gases, mix	ture of gases,		
	partial pressures, Dalton's law, real gases, molecular interactions in gases, comp	ression factor,		
	virial equation of state, Boyle's temperature, critical states, critical constants, li	quefication of		
	gases, van der Waal's equation and limitations, interpretation of deviations	from van der		
	Waal's equation, law of the corresponding states. The kinetic model of ga	ases, Maxwell		
	distribution of speeds, collisions with walls and surfaces, rate of effusion, transp	ort properties		
	of a perfect gas.			
	THERMODYNAMICS OF GASES	(09 Hours)		

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

First law of thermodynamics and gases – internal energy, enthalpy, work thermodynamics and gases, second law of thermodynamics and gases, Helmholtz and Gibb's energy relations, criteria of reversibility, van't Hoff isotherm, van't Hoff isochore, entropy, entropy changes, Nernst heat theorem, third law of thermody imperfections	function, heat gies, Maxwell's carnot cycle, dynamics and
KINETICS AND THERMODYNAMICS OF SOLUTIONS	(06 Hours)
Molecular motion in liquids, methods to detect motion in liquids, electrol Arrhenius theory and Ghosh theory of electrolytes, activity and activity conductivity, specific conductivity, equivalent conductivity, molar conductivity law, mobilities of ions, Grotthuss mechanism.	lyte solutions, ty coefficient, η, Kohlrausch's
Tutorials will be based on the coverage of the above topics separately	(15 Hours)
	 First law of thermodynamics and gases – internal energy, enthalpy, work is changes, second law of thermodynamics and gases, Helmholtz and Gibb's energy relations, criteria of reversibility, van't Hoff isotherm, van't Hoff isochore, entropy, entropy changes, Nernst heat theorem, third law of thermody imperfections KINETICS AND THERMODYNAMICS OF SOLUTIONS Molecular motion in liquids, methods to detect motion in liquids, electrol Arrhenius theory and Ghosh theory of electrolytes, activity and activity conductivity, specific conductivity, equivalent conductivity, molar conductivity law, mobilities of ions, Grotthuss mechanism. Tutorials will be based on the coverage of the above topics separately

Practical will be based on the coverage of the above topics separately (30 Hours)

(Total Contact Time: 45 Hours + 15 Hours + 30 Hours = 90 Hours)

3.	Tutorials
1	Numericals based on application of stoichiometry to chemical reactions.
2	Calculations based on limiting reagents, reaction yields and titrations.
3	Determination and conversion of concentration terms.
4	Diagrams and calculations based on partially immiscible liquids.
5	Calculations based on solubility –equilibrium concept.
6	Numericals based on compressibility factor and virial equation of state.
7	Graphs and calculations based on liquefaction of gases, critical states and critical values.
8	Solving problems related to Maxwell distribution of speeds.
9	Calculation based on internal energy, enthalpy, work function and free energy changes during
	gaseous reactions.
10	Applications of Maxwell's relation in thermodynamics.
11	Entropy changes in gases.
12	Conductivities of solutions.
13	Effect of dilution and temperature on conductivities.
14	Ionic mobility and abnormally high ionic conductances.

4.	Practical
1	Preparation of primary and secondary standards along with the standardization of secondary
	solutions.
2	Estimation of a weak acid, CH3COOH with a standardized NaOH solution.
3	Determination of Na2CO3 and NaOH in a mixture with standardized HCl solution.
4	Estimation of boric acid with standardized NaOH solution.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

5	Estimation of CH3COOH and HCl in a mixture by titrating with a strong base, NaOH.
6	Preparation of KMnO4 and estimation of H2O2 using standardized KMnO4 .
7	Estimation of iodine concentration using standardized sodium thiosulphate.
8	To study the kinetics of ester hydrolysis in acidic media.
9	Demonstration: To find out the dissociation constant of acetic acid by potentiometric titration.
10	Demonstration: To titrate 'X'N H2SO4 by titrating it against 0.1N NaOH solution
	potentiometrically and find out the endpoint, normality and strength of H2SO4 solution.

5.	Books Recommended
1	B. R. Puri, L. R. Sharma, M.S. Pathania, Principles of Physical Chemistry, 47th edition, Vishal
	Publications, New Delhi, 2017.
2	G. Raj, Advanced Physical Chemistry, 4th edition, Goel Publishing House, Meerut, 1990.
3	P. Atkins, J. de Paula, J. Keeler Atkins' Physical Chemistry, 11th edition, Oxford Publishing House,
	2018.
4	A. Bhal, B. S. Bahl, G. D. Tuli, Essential of Physical Chemistry, 28th edition, S.C. Chand, 2020.
5	A. K. Nad, B. Mahapatra, A. Ghoshal, An Advanced Course in Practical Chemistry, New Central
	Book Agency P Ltd, 2022.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – I
ATOMIC STRUCTURE AND CHEMICAL BONDING
CY103

Scheme	L	Т	Ρ	Credit
	3	0	2	04

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Gain knowledge of basic chemistry of elements.
CO2	Apply the concept of lattice energy using Born-Landé equation.
CO3	Understand the importance and application of chemical bonds, inter-molecular and intramolecular weak chemical forces.
CO4	Solve the conceptual questions using the knowledge gained by studying the quantum mechanical model.
CO5	Describe the plausible structures and geometries of molecules using Radius Ratio Rules, VSEPR theory and MO diagrams.

2.	Syllabus	
	PERIODIC TABLE AND ATOMIC PROPERTIES	(13 Hours)
	Periodicity of Elements: Brief discussion of the properties of the elements: Eff	ective nuclear
	charge, shielding or screening effect, Slater rules, variation of effective nuclear	charge in the
	and factors affecting ionization onthalow and tronds in groups and periods	Electron gain
	enthalow and trends in groups and periods. Electronegativity Pauling's/ All	Ired Rochow's
	scales. Variation of electronegativity with bond order, partial charge, hybridizati	ion, and group
	electronegativity.	8. o sp
	CHEMICAL BONDING AND MOLECULAR STRUCTURE	(16 Hours)
	Atomic models, de Broglie principle, postulates of quantum mechanics, quar	ntum numbers
	Schrödinger wave equation: The significance of Ψ^2 , Schrodinger wave equation	on for H-atom,
	angular and radial wave function, Valence Band Theory, Valence Shell Electron	Pair Repulsion
	theory, hybridization, geometry and shape of molecules, Molecular Orbital The	ory, molecular
	orbital diagrams of diatomic and simple polyatomic molecules: N ₂ , O ₂ , C ₂ , B ₂ , F	2, CO, NO, and
	their ions; HCl, BeF_2 , CO_2 , (idea of s-p mixing and orbital interaction to be given).
	IONIC SOLIDS	(16 Hours)
	Ionic structure, radius ratio effect, and coordination number, calculation of limiti	ng radius ratio
	values for Coordination numbers, limitations of radius ratio rule, lattice of	defects, semi-
	conductors, lattice energy, Born-Haber cycle, solvation energy and solubility of	of ionic solids,
	polarizing power and polarisability of ions, Fajan's rule, metallic bond: free ele	ctron, valence
	bond and band theories; weak interactions: hydrogen bonding, Van der Waal	s interactions.
	covalent bond, coordinate bond, hydrogen bond, dipole moment. Metal	lic Bond: The
	qualitative idea of valence bond and band theories. Semiconductors and insulat	tors, defects in

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

solids, effects of weak chemical forces, melting and boiling points, solubility, an	d energetics of
the dissolution process	
Practical will be based on the coverage of the above topics separately	(30 Hours)
(Total Contact Time: 45 Hours + 30 Hou	rs = 75 Hours)

3.	Practical
1	Estimation of Cu(II) ions iodometrically using Na ₂ S ₂ O ₃ .
2	Estimation of oxalic acid using KMnO₄ by redox titration.
3	Estimation of oxalic acid and sodium oxalate in a mixture.
4	Estimation of Fe(II) with $K_2Cr_2O_7$ using an internal indicator (diphenylamine, N-
	phenylanthranilic acid) and discussion of the external indicator.
5	Estimation of Fe(II) using standardized KMnO₄ solution.
6	Determination of strength of potassium dichromate solution iodometrically using sodium
	thiosulphate.
7	Preparation of ammonium Cu(II) sulphate tetrahydrate complex.
8	Preparation of ferrous ammonium sulphate.
9	Preparation of potassium trioxalatochromate(III).
10	Preparation of sodium ferrioxalate(sodium trioxalatoferrate(III).

4.	Books Recommended
1	Lee, J. D. (1998). Concise Inorganic Chemistry (5th ed.). United Kingdom: Recommended Books
	have been reviewed 12 Wiley/Oxford Publications.
2	Puri, B.R., Sharma, L.R. &. Kalia, K.C. (2017). Principles of Inorganic Chemistry (33rd ed.). India:
	Vishal Publications.
3	Cotton, F. A., & Wilkinson, G. (1994). Basic Inorganic Chemistry (3rd ed.). United Kingdom: John
	Wiley Publications.
4	Bhagchandani, P. (2017). Inorganic Chemistry. India: Sahitya Bhawan Publications. 5. Malik, W.
	U., Tuli, G.D., & Madan, R. D.(2010).
5	Atkins, P.; Paula, J. D., Atkin's Physical Chemistry, Oxford (Indian Edition), Oxford University
	Press, 2012.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – I	Scheme	L	Т	Ρ	Credit
QUALITATIVE AND QUANTITATIVE ANALYSIS		3	0	2	04
CY105					

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Acquaint with the purpose and applicability of Basic Analytical Chemistry Tools
CO2	Adapt various mathematical tools in chemistry to gain knowledge about fundamental
	qualitative approaches.
CO3	Adapt reactions within the solution using fundamental theoretical principles.
CO4	Understand the use of gravimetric and titrimetric methods in analysing various methods.
CO5	Understand the applicability of Quality control and Quality assurance relevant to
	pharmaceutical, environmental and petrochemical industry.

2.	Syllabus	
	BASIC TOOLS OF ANALYTICAL CHEMISTRY	(15 Hours)
	Fundamental Units of Measure, Significant Figures, Units for Expressing (Concentration,
	Stoichiometric Calculations, Accuracy, Precision, Sensitivity, Selectivity, Ro	bustness and
	Ruggedness, Error and Uncertainty, Propagation of Uncertainty: Uncertainty W	hen Adding or
	Subtracting, Uncertainty When Multiplying or Dividing, Uncertainty for Mixe	ed Operations,
	Uncertainty for Other Mathematical Functions, Statistical Methods for Normal	Distributions,
	Calibrations, Standardizations and Blank Corrections.	Γ
	FUNDAMENTAL THEORETICAL PRINCIPLES OF REACTIONS IN SOLUTION	(10 Hours)
	Chemical equilibrium, The law of mass action, Factors affecting chemical reaction	ons in solution,
	Electrolytic dissociation, Activity and activity coefficient, Solubility product,	Quantitative
	effects of a common ion , Fractional precipitation, Effect of acids on the	solubility of a
	precipitate, Effect of temperature on the solubility of a precipitate, Effect of the	solvent on the
	solubility of a precipitate Acid-base equilibria in water, Strengths of acid	ds and bases,
	Dissociation of polyprotic acids, Common-ion effect, The ionic product of water,	The hydrogen
	ion exponent, The hydrolysis of salts Hydrolysis constant and degree of hyd	Irolysis, Buffer
	solutions, Metal ion buffers, Electrode potentials, Concentration cells Calculatio	on of the e.m.f.
	of a voltaic cell, Oxidation-reduction cells, Calculation of the standard reduction	tion potential,
	Equilibrium constants of oxidation-reduction reactions.	
	GRAVIMETRY AND TITRIMETRIC METHODS OF ANALYSIS	(10 Hours)
	Introduction to gravimetric analysis, Types of Gravimetric Methods, Conserva	ation of Mass,
	Precipitation Gravimetry, Volatilization Gravimetry, Titrations Based on Acid-B	ase Reactions,
	Titrations Based on Complexation Reactions, Titrations Based on Red	ox Reactions,
	Precipitation Titrations, Supersaturation and precipitate formation, The	purity of the
	precipitate: Co-precipitation, Conditions of precipitation, Precipitation from	homogeneous
	solution. Washing the precipitate.	

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

QUALITY ASSURANCE	(10 Hours)
Quality Control, Quality Assessment: Internal Methods of Quality Assessment Methods of Quality Assessment, Evaluating Quality Assurance Data: Prescript Performance-Based Approach	nent, External tive Approach,
Practical will be based on the coverage of the above topics separately	(30 Hours)
(Total Contact Time: 45 Hours + 30 Hour	rs = 75 Hours)

3.	Practical
1	Calibration—Volumetric glassware (burets, pipets, and volumetric flasks)
2	Standardization—External standards, standard additions, and internal standards
3	Effect of Ionic Strength on an Equilibrium Constant
4	Equilibrium Constants for Calcium Iodate Solubility and Iodic Acid Dissociation.
5	The effect of pH on the solubility of $Ca(IO_3)_2$
6	The Solubility of Silver Acetate.
7	Determination of the Thermodynamic Solubility Product, Ksp, of PbI2
8	Determination of Ammonia in Household Cleaners,
9	Acid Rain Analysis by Standard Addition Titration
10	Titration of Chromate–Dichromate Mixtures.

4.	Books Recommended
1	Harvey, David, 'Modern Analytical Chemistry' McGraw-Hill Companies, 1st Edition 2006.
2	Harvey, David, Analytical chemistry Seventh edition, Wiley.
3	W. Fifield and David Kealey, Principles and Practice of Analytical Chemistry, 5 th Edition University
	Press, 2012.
4	Vogel A. I. and Mendham J., 'Vogel's Textbook of Quantitative Chemical Analysis Hall, 6th
	Edition, 2002.
5	D. A. Skoog, F. J. Holler, T. A. Nieman, "Principles of Instrumental Analysis", sixth edition, 2006.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – I	Scheme	L	Т	Ρ	Credit
MATHEMATICS FOR CHEMISTRY		3	1	0	04
MA121					

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Solve successive differentiations with its applications to different series expansions.
CO2	Apply partial differentiation to find series expansion with error approximations, extremals
	and jacobians.
CO3	Trace curves in Cartesian, polar, and parametric forms.
CO4	Solve first-order ordinary differential equations with its applications to real world problems.
CO5	Analyse the Linear systems of algebraic equation with different approach.

2.	Syllabus					
	DIFFERENTIAL CALCULUS	(10 Hours)				
	Differentiation of Hyperbolic and Inverse Hyperbolic functions. Successive Differentiation, standard forms, Leibnitz's theorem and applications, Power series, Expansion of functions, Taylor's and Maclaurin's series. Curvature, Radius of curvature for Cartesian curve with application.					
	PARTIAL DIFFERENTIATION	(10 Hours)				
	Partial differentiation, Euler's theorem for homogeneous function, Modified Eu	ler's theorem,				
	Taylor's and Maclaurin's series for two variables. Tangent plane and Normal I	ine, Error and				
	Approximation, Jacobians with properties, Extreme values of function of t	wo variables,				
	Lagrange's methods of undetermined multipliers.					
	CURVE TRACING (05 Hor					
	Cartesian, polar and parametric for of standard curves.					
	ORDINARY DIFFERENTIAL EQUATION (08 Hou					
	Reorientation of the differential equation first order first degree, exact differe and Integrating factors, Solution of homogenous equations higher order, co functions, Particular Integrals, Linear differential equation with variable coeffici	ntial equation omplementary ent				
	APPLICATION OF DIFFERENTIAL EQUATION (MATHEMATICAL MODELLING)	(07 Hours)				
	Modelling of Real-world problems, particularly Chemical Systems, the spread o	f epidemic (SI,				
	SIS, SIR), Newton's Law of cooling, Single compartment modelling, Bending of beam models.					
	SYSTEM OF LINEAR ALGEBRAIC EQUATION (05 Hours)					
	Linear systems, Elementary row, and column transformation, the rank of a matr	ix, consistency				
	of the linear system of equations, Linear Independence and Dependence of vectors, Gauss					
	Elimination method, Gauss-Jorden Method, Gauss-Jacobi Iteration Method.					

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

Tutorials will be based on the coverage of the above topics separately	(15 Hours)

(Total Contact Time: 45 Hours + 15 Hours = 60 Hours)

3.	Tutorials
1	Differential calculus -I
2	Differential calculus -II
3	Differential calculus -III
4	Partial differentiation-I
5	Partial differentiation-II
6	Curve tracing-I
7	Curve tracing-II
8	Ordinary differential equation-I
9	Ordinary differential equation-II
10	Ordinary differential equation-III
11	Application of differential equation-I
12	Application of differential equation-II
13	System of linear algebraic equation-I
14	System of linear algebraic equation-II

4.	Books Recommended
1	J. Stewart, "Calculus," Thomson Asia, Singapore, 1 January 2012.
2	P. O'Neil, "Advanced Engineering Mathematics," Thompson, Singapore, Ind. Ed. 2002.
3	B. Kreyszing, "Advanced Engineering Mathematics," John Wiley & Sons, Singapore, Int. Student
	Ed. 2015.
4	Wiley C. R., "Advanced Engineering Mathematics", McGraw Hill Inc., New York Ed. 1993.
5	Bali and Iyengar. Engg. Mathematics, Laxmi Publications, New Delhi, 2004.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Curriculum SVNIT Surat (58th Senate, 31 May 2023)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – I	Scheme	L	Т	Ρ	Credit
PHYSICS OF MATERIALS AND NUCLEI		3	0	0	03
PH111					

1.	Course Outcomes (COs):								
	At the end of the course, the students will be able to								
CO1	Define the concept of basic crystallography								
CO2	Interpret the importance of the semiconductors and find the parameters of it by Hall effects								
	experiments								
CO3	Give brief outline of magnetic materials and classify between conductor and								
	superconductors								
CO4	Understand the fundamental of statistical mechanics								
CO5	Rephrase the nuclear properties and classify the elementary particles								

2.	Syllabus					
	CRYSTALLOGRAPHY	(10 Hours)				
	Crystalline and amorphous solids, Lattice and unit cell, Seven crystal system and Bravais					
	lattices, Symmetry operation, Miller indices, Atomic radius, Coordination nu	mber, Packing				
	factor calculation for SC, BCC, FCC, Bragg's law of X-ray diffraction, Laue Method, Powder crystal method.					
	SEMICONDUCTOR PHYSICS	(05 Hours)				
	Introduction, Direct and indirect bandgap semiconductors, Intrinsic	and extrinsic				
	semiconductors, Law of Mass action, Charge neutrality, Hall Effect.					
	MAGNETIC MATERIALS, CONDUCTORS AND SUPERCONDUCTORS	(10 Hours)				
	Magnetic materials: Definition of terms, Classification of magnetic materials a	nd properties,				
	Domain theory of ferromagnetism, Hard and soft magnetic materials, Conduc	ctors: Classical				
	free electron theory (Lorentz–Drude theory), Electrical conductivity, Supe	r conductors:				
	Definition, Meissner effect, Type I & II superconductors.					
	STATISTICAL MECHANICS	(10 Hours)				
	Macroscopic and microscopic states, Phase space, Condition for statistical equil	ibrium, Micro-				
	canonical ensemble, canonical ensemble, Grand-canonical ensemble, Partition f	unction, Bose-				
	Einstein and Fermi-Dirac distribution					
	NUCLEAR AND PARTICLE PHYSICS (10 Hours)					
	Nuclear properties and forces, Nuclear models, Shell model, Nuclear reaction, Radioactivity,					
	Types and half-lives, Application in determining the age of rock and fossils, Stellar nucleo					
	synthesis, Fundamental forces, Particle physics, Classification of matter, Quark model, Neutrino					
	properties and their detection.					
	(Total Contact Ti	me: 45 Hours)				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

3.	Books Recommended
1	R. Resnick and D. Halliday, Physics (Part I & II), Wiley, 2007.
2	A. Beiser, Concept of the Modern Physics, McGraw-Hill, 2008.
3	K. Huang, Statistical mechanics, Willey, 2008.
4	M. N. Avadhanulu and P. G. Kshirsagar, A text book of Engineering Physics, S Chand, 2009.
5	C. Kittel, Introduction to Solid State Physics, Wiley, 2016.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – II	Scheme	L	Т	Ρ	Credit
FUNDAMENTALS OF ORGANIC CHEMISTRY		3	1	2	05
CY102					

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Impart knowledge in fundamental aspects of organic chemistry.
CO2	Understand and apply concepts of organic chemical structure.
CO3	Predict products, including stereochemistry, in the reactions of alkanes, alkenes, dienes, and
	cycloalkanes.
CO4	Identify chiral carbons as (R) or (S), identify relationships between pairs of molecules as
	enantiomers, diastereomers, or equivalent, and identify when a solution is racemic versus
	optically active
CO5	Know about the types of reactions and mechanisms by realizing the various factors which
	are affecting the reactions.

2.	Syllabus	
	GENERAL INTRODUCTION	(06 Hours)
	Classification of organic compounds and functional groups, Tetra-valency of Carb	oon, Structural
	representations of organic compounds. Physical properties of organic compounds	nds: Solubility,
	Polarity, organic Acid and bases, pKa and pH, Lewis acid and base (hard/soft), d	ipole moment
	and substituent effects, types of intramolecular and intermolecular reaction.	
	METHODS OF PURIFICATION OF ORGANIC COMPOUNDS	(04 Hours)
	Sublimation, Crystallisation, Distillation (Simple, Fractional, Vacuum and Stean	n), Differential
	Extraction.	
	CONCEPTS IN ORGANIC REACTION MECHANISMS	(09 Hours)
	Fission of a covalent bond, Nucleophiles and Electrophiles, Electron Moveme	ent in Organic
	Reactions, Electron Displacement Effects in Covalent Bonds, Inductive Effect	ct, Resonance
	Structure, Resonance Effect, Electromeric Effect, Hyperconjugation and Typ	es of Organic
	Reactions and Mechanisms (aliphatic and aromatic compounds).	
	STEREOCHEMISTRY OF ORGANIC COMPOUNDS	(09 Hours)
	Conformations and configurations of alkanes; molecular chirality,	enantiomers,
	diastereomers, threo- and erythro- diastereomers, meso compounds,	resolution of
	enantiomers, retention and racemization. Relative and absolute configurati	ion, sequence
	rules, D and L systems of nomenclature and R and S systems of nomenclature. I	Determination
	of composition of enantiomers and diastereomers. Geometric isomerism: det	ermination of
	configuration of geometric isomers E and Z systems of nomenclature, geomet	tric isomers of
	oximes and alicylic compounds.	
	ORGANIC COMPOUNDS AND REACTIONS	(09 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

Structure and properties, relationship between shapes and properties of organic molecules: reactive intermediates, electrophiles and nucleophiles, free radical, carbonium ion and carbanion, carbenes, nitrenes, and arynes, types of organic reactions: stepwise, ionic and free radical mechanisms, single step concerted mechanism, addition, substitution, elimination and rearrangement, method of determining mechanisms (identification of product, isotope effects and determination of reaction intermediates).

HYDROCARBONS	(08 Hours)
Structure, preparation and reactions of: alkanes, alkenes and alkynes. Dienes: I	Nomenclature,
classification, methods of formation of butadiene, chemical reactions, conjugate	ed and isolated
dienes, resonance stabilization, 1,2- versus 1,4- addition. Cycloalkanes: I	Nomenclature,
methods of formation, chemical reactions, Baeyer's strain theory and its limitat	ions, theory of
strainless ring. Reactions and stereochemistry of substituted cyclohexane.	
Tutorials will be based on the coverage of the above topics separately	(15 Hours)
Practical will be based on the coverage of the above topics separately	(30 Hours)
(Total Contact Time: 45 Hours + 15 Hours + 30 Hou	rs = 90 Hours)

3.	Tutorials
1	Drawing various mechanisms with curly arrow step-by-step.
2	Relative strengths of organic acids and bases.
3	Relative stability of reaction intermediates.
4	Systematic nomenclature of organic compounds
5	Structure and reactivity relationship of organic reactions.
6	Method of determining mechanisms of organic reactions.
7	Nomenclature of cycloalkanes
8	Conformational isomers of alkanes and cycloalkanes
9	Molecular chirality, enantiomers, diastereomers.
10	Meso compounds, racemic mixture. resolution of enantiomers
11	Threo- and erythro- D and L systems of nomenclature and R and S systems of nomenclature.
12	Determination of configuration of geometric isomers E and Z systems
13	Determination of composition of enantiomers and diastereomers.
14	Reactions and stereochemistry of substituted cyclohexane.

4.	Practical
1	Filtration, melting point and mixed melting point
2	Demonstration: Purification of liquid organic compounds
3	Simple Distillation (Methanol and water)
4	Determination of boiling point using distillation (Methanol and water)
5	Distillation at reduced pressure (Methanol)
6	Demonstration: Purification of solid organic compounds
7	Crystallization (Benzoic acid)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

8	Crystallization (Acetanilide)
9	Fractional recrystallization (Cinnamic acid and benzoic acid)
10	Sublimation (benzoic acid and sugar)

5.	Books Recommended
1	Clayden, J., Greeves, N., & Warren, S. (2012). Organic Chemistry (2nd ed.) Oxford University
	Press.
2	Carey, Francis A., and Robert M. Giuliano. Organic Chemistry, (10th ed.). New York, McGraw-
	Hill, 2016.
3	M. B. Smith, Jerry March, March's Advanced Organic Chemistry: Reactions, Mechanisms, and
	Structure, sixth edition, Wiley-Interscience, 2012.
4	H. Maskill (Ed.), The Investigations of Organic Reactions and Their Mechanisms, first edition,
	Blackwell Publishing Ltd. Oxford, 2006.
5	V. K. Yadav, Steric and Stereoelectronic Effects in Organic Chemistry, Springer, first edition, 2016

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – II	Scheme	L	Т	Ρ	Credit
BASIC INDUSTRIAL CHEMISTRY		3	0	2	04
CY104					

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Impart knowledge in fundamental aspects of industrial chemistry.
CO2	Acquire knowledge on material and energy balance.
CO3	Describe the composition of different types of glasses.
CO4	Understand different types of ceramics and their uses.
CO5	Describe the steps involved in the manufacturing of cement

2.	Syllabus	
	BASIC CONCEPT	(10 Hours)
	Unit operations and unit processes, preparation of flow diagrams, concept	ts of material
	balance and energy balance.	
	GLASS	(09 Hours)
	Properties and classification silicate and non-silicate glasses. Manufacture and	processing of
	glass. Composition and properties of the following types of glasses: Soda lime gla	ass, lead glass,
	safety glass, borosilicate glass, fluorosilicate, colored glass, photosensitive glass	
	CERAMICS	(09 Hours)
	Important clays and feldspar, ceramic, their types and manufacture. High techno	ology ceramics
	and their applications.	
	CEMENT	(08 Hours)
	Classification of cement, ingredients and their role, manufacture of cement a	nd the setting
	process, quick setting cements	
	EXPLOSIVES	(09 Hours)
	Properties and classification of explosives, preparation and explosive prope	rties of nitro-
	cellulose, TNT, PETN, cyclonite (RDX). Introduction of rocket propellant.	
	Practical will be based on the coverage of the above topics separately	(30 Hours)
		,
	(Total Contact Time: 45 Hours + 30 Hour	rs = 75 Hours)

3.	Practical
1	To determine the loss on igniting the cement sample.
2	To determination the total insoluble residue in the cement sample.
3	To determine the total silica in the given sample.
4	To determine the total oxides (Sesquioxides $Fe_2O_3 + Al_2O_3$) in the given sample.
5	To determine the amount of lime (CaO) in the given sample.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

6	To determine the amount of Magnesia (MgO) in the given sample.
7	To determine the amount of Iron as Fe_2O_3 in the given sample.
8	Preparation of nitro-cellulose.

9 Synthesis using different unit processes.

10 Synthesis using different unit processes

4.	Books Recommended
1	Process calculations (Stoichiommetry) K.A. Ghavane (Nirali Prakashan).
2	Basic Principles & Calculations in Chemical Engineering, David M. Himmelblau (Prentice Hall).
3	J. A. Kent: Riegelís Handbook of Industrial Chemistry, CBS Publishers, New Delhi.
4	O. P. Vermani, A. K. Narula: Industrial Chemistry, Galgotia Publications Pvt. Ltd., New Delhi.
5	S. C. Bhatia: Chemical Process Industries, Vol. I & II, CBS Publishers, New Delhi

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – II	Scheme	L	Т	Ρ	Credit
CHEMISTRY OF S- AND P-BLOCK ELEMENTS		3	0	0	03
CY106					

1.	Course Outcomes (COs):								
	At the end of the course, the students will be able to								
CO1	Gain knowledge of basic chemistry of main group elements.								
CO2	Identify different group elements based on the structure and properties.								
CO3	Compare metals, non-metals and noble gases.								
CO4	Correlate properties of stoichiometric and nonstoichiometric compounds								
CO5	Acquire knowledge about physical aspects involved in manufacturing of inorganic								
	compounds.								

2.	Syllabus				
	ALKALI AND ALKALINE EARTH METALS	(10 Hours)			
	s-Block elements: Physical properties, allotropy, structure and bonding, chemistry, reactivity, oxidation and spectral behavior; Compounds of <i>s</i> -block elements: Carbonates, sulphates, nitrides, nitrates, bicarbonates, hydrides; Metallic lithium and its compounds; Metallic sodium, sodium borates; Potassium and its compounds (KOH and K ₂ CO ₃), compounds of beryllium and magnesium; calcium, strontium and barium; and their applications. NOBLE GASES AND NONMETALS (10 Hours)				
	General characteristics of <i>p</i> - block elements and their compounds: allotropy,	structure and			
	characteristics, reactivity and compounds of noble gases, allotropic forms of carbon, carbides of Ca and Si, industrially important organo-silicon compounds, industrial silicone products.				
	HALOGENS AND CHALCOGENS (10 Hou				
	General characteristics; Chemistry and compounds of halogens; inter halogen compounds; Pseudohalogens, peracids and polyhalides; Relative strength of trihalides as Lewis acids; Oxidation-reduction chemistry of Cl ₂ ; Relative strength of oxyacids of halogens; Applications of iodine and iodine compounds; Allotropic forms and significance of sulphur; Reactivity of chalcogens; Compounds of oxygen; Water, H ₂ O ₂ , inorganic peroxides and ozone oxides.				
	PROPERTIES & MANUFACTURING OF INORGANIC COMPOUNDS	(08 Hours)			
	Stoichiometric and Nonstoichiometric compounds, nomenclature of so compounds, Manufacturing of NH_3 , HNO_3 and H_2SO_4 .	me inorganic			
	ACIDS AND BASES	(07 Hours)			
	Acid base concepts: Arrhenius, Bronsted, Lowry and Lewis; Classification of acids and bases as hard and soft. Pearson's HSAB concept, applications of HSAB principle. Relative strength of acids and bases, effect of substituents and solvent on their strength.				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

(Total Contact Time: 45 Hours)

3.	Books Recommended				
1	G. L. Miessler, D.A. Tarr, Inorganic Chemistry, 3rd Edition, Pearson, 2008.				
2	J. D. Lee, <i>Concise Inorganic Chemistry</i> , 5 th Edition, Wiley-Blackwell, New Jersey, 1999.				
3	T. Moeller, Inorganic Chemistry: A Modern Introduction, 2 nd edition, John Wiley & Sons Inc., New				
	York, 1982.				
4	F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6 th				
	Edition, John Wiley & Sons, New York, 1999.				
5	N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2 nd Edition, Butterworth-				
	Heinemann, Massachusetts, 1997.				

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – II	Scheme	L	Т	Ρ	Credit
FUNDAMENTALS OF COMPUTER AND PROGRAMMING		3	0	2	04
CS110					

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Acquire knowledge about computer architecture, network and software development.
CO2	Install an operating system and configure the network along with programming skills to solve
	the given problem.
CO3	Debug network and operating system related issues and analyse the given problem.
CO4	Evaluate programming solutions with different aspects.
CO5	Design and develop solution for given problems.

2.	Syllabus				
	INTRODUCTION TO COMPUTER AND ITS ARCHITECTURE	(02 Hours)			
	Introduction and Characteristics, Computer Architecture, Generations, Cla	assifications,			
	Applications, Central Processing Unit and Memory, Communication between va	arious Units,			
	Processor Speed, Multiprocessor System, Peripheral Buses, Motherboard Demonstration.				
	MEMORY AND VARIOUS INPUT AND OUTPUT DEVICES	(02 Hours)			
	Introduction to Memory, Input and Output Devices, Memory Hierarchy, Primary N	Memory and			
	its Types, Secondary Memory, Classification of Secondary Memory, Various Second	dary Storage			
	Devices and their Functioning.				
	NUMBER SYSTEMS	(01 Hour)			
	Introduction and type of Number System, Conversion between Number System	, Arithmetic			
	Operations in different Number System, Signed and Unsigned Number System.				
	INTRODUCTION TO SYSTEM SOFTWARES AND PROGRAMMING LANGUAGES				
	Classification of Computer Languages, Introduction of Operating System, Evolution, Type and				
	Function of OS, Unix Commands, Evolution and Classification of programming Language,				
	Feature and Selection of good Programming Language, Development of Program, Algorithm				
	and Flowchart, Program Testing and Debugging, Program Documentation and Paradigms,				
	Characteristics of good Program.				
	WINDOWS OPERATING SYSTEM AND ITS ENVIRONMENT	(02 Hours)			
	Introduction to GUI based OS, Configuration, Setup, Services, Network Configurati	on.			
	LINUX OPERATING SYSTEM AND ITS ENVIRONMENT	(02 Hours)			
	Introduction to Unix based OS, Configuration, Setup, Services, Scripting, Network				
	Configuration.				
	DEBUGGING TOOLS AND COMPILER OPTION	(04 Hours)			
	Different Debugging tools, Commands, Memory dump, Register and Variab	le Tracking,			
	Instruction and Function level debugging, Compiler Options, Profile Generation.				
	DATA COMMUNICATION, COMPUTER NETWORK AND INTERNET BASICS	(02 Hours)			

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

(Total Contact Time: 45 Hours + 30 Hours = 75 Hours)				
Practical will be based on the coverage of the above topics separately.	(30 Hours)			
Include Graphics Library, Debugging, Linking, Compilation Option for Optimization	n, Make file.			
PROGRAMMING USING 'C' LANGUAGE – GRAPHICS, DEBUGGING	(02 Hours)			
Design, File handling operations, Read and Write to Secondary Devices, Read and Write to Input and Output Ports.				
Functions, Passing the arguments, Return values from functions, Recursion,	Header Files			
PROGRAMMING USING 'C' LANGUAGE – FUNCTIONS	(06 Hours)			
and Characters, Two-Dimensional Array, Introduction and Development of User Defined Functions, Different Types of Variables and Parameters, Structure and Union, Introduction to Pointers, Pointer Arithmetic, Array of Pointers, Pointers and Functions, Pointers and structures, File Handling Operations.				
Conditional Control Statements, Loop Control Statements, One Dimensional Array of Numbers				
PROGRAMMING USING 'C' LANGUAGE – CONTROL STATEMENTS, STRUCTURES, ARRAYS, POINTERS	(12 Hours)			
Statements.				
Characteristics of C Language, Identifiers and Keywords, Data Types Constants and Variables, Declarations and Statements, Representation of Expressions, Classification of Operators and				
PROGRAMMING USING 'C' LANGUAGE – INTRODUCTION	(06 Hours)			
Data Communication and Transmission media, Multiplexing and Switching, Computer Network and Network Topology, Communication Protocols and Network Devices, Evolution and Basic Internet Term, Getting Connected to Internet and Internet Application, Email and its working, Searching the Web, Languages of Internet, Internet and Viruses.				

3.	Practical
1	Basic commands of Windows and Linux
2	Flow chart drawing and writing pseudo steps or algorithms steps
3	Programming for logic development using different control statements
4	Programming for familiarity with control statement, array, pointers
5	Programming using structures, pointers, programming using functions

4.	Books Recommended
1	"Introduction to Computer Science", Fourth Impression, Pearson Education, ITL Education
	Solutions Limited, 2009.
2	Gottfried B.S., "Programming with C Schaum's outline Series", Outline Series, 2 nd Edition, Tata
	McGraw-Hill, 2006.
3	Brian W. Kernighan, Dennis M. Ritchie, "The C Programming language", 2 nd Edition, Prentice
	Hall PTR publication, 1988.
4	E. Balagurusamy, "Programming in ANSI C", 6 th Edition, Tata Mc-Graw Hill, 2012.
5	Pradip Dey, "Programming in C", 2 nd Edition, Oxford University Press, 2012.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Curriculum SVNIT Surat (58th Senate, 31 May 2023)

Five Years Integrated M.Sc. Chemistry

M.Sc.– I (Chem), Semester – II	Scheme	L	Т	Ρ	Credit
ENGLISH AND PROFESSIONAL COMMUNICATION		3	1	0	04
HS110					

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	Show enhanced reception towards the use of English language.
CO2	Choose and employ appropriate words for professional communication.
CO3	Develop sentences and text in English coherently and formally.
CO4	Demonstrate overall improvement in oral communication.
CO5	Analyze and infer from written and oral messages.

2.	Syllabus	
	COMMUNICATION	(05 Hours)
	Introduction to Communication, Different forms of Communication, Communication and some remedies, Non-Verbal Communication – Type Communication in Intercultural Context	Barriers to s, Non-Verbal
	VOCABULARY AND USAGE OF WORDS	(05 Hours)
	C ommon Errors, Synonyms, Antonyms, Homophones, and Homonyms, Substitution; Misappropriations; Indianisms; Redundant Words.	; One Word
	LANGUAGE THROUGH LITERATURE	(09 Hours)
	Selected short stories, essays, and poems to discuss nuances of English language	ge.
	LISTENING AND READING SKILLS	(06 Hours)
	Types of listening, Modes of Listening-Active and Passive, Listening and note to Practice and activities Reading Comprehension (unseen passage- literary /scientific / technical) S scanning, fact vs opinion, Comprehension practice	aking practice, Skimming and
	SPEAKING SKILLS	(10 Hours)
	Effective Speaking, JAM, Presentation Skills- types, preparation and practice types, preparation and mock interview; Group Discussion- types, preparation a	e. Interviews- nd practice
	WRITING SKILLS	(10 Hours)
	Prerequisites of effective writing, Memo-types, Letter Writing- types, Email Netiquette, Résumé-types, Report Writing and its types, Editing.	etiquette and
	Tutorials will be based on the coverage of the above topics separately	(15 Hours)
	(Total Contact Time: 45 Hours + 15 Hou	rs = 60 Hours)

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

3.	Tutorials
1	Letter and Resume
2	Group Discussion
3	Presentation Skills (Individual)
4	Role Play on Nonverbal communication
5	Group Presentation
6	Debate
7	Body language and intercultural communication
8	Listening Activities
9	Editing
10	Report Writing
11	Mock interviews
12	JAM

4.	Books Recommended
1	Kumar, Sanjay and Pushp, Lata. Communication Skills, 2 nd Edition, OUP, New Delhi, 2015.
2	Raman, Meenakshi & Sharma Sangeeta. Technical Communication Principles and Practice, 3rd
	Edition, OUP, New Delhi, 2015.
3	Raymond V. Lesikar and Marie E Flatley. Basic Business Communication skills for Empowering
	the Internet generation. Tata McGraw Hill publishing company limited. New Delhi 2005.
4	Courtland L. Bovee, John V. Thill, and Mukesh Chaturvedi. "Business Communication Today."
	Ninth Edition. Pearson, 2009.
5	Mike Markel. "Practical Strategies for Technical Communication," Bedford/ St. Martin's Second
	Edition, 2016
6	Laura J. Gurak and John M. Lannon. "Strategies for Technical Communication in the Workplace,"
	Pearson, 2013.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

B.Tech.1 /M.Sc. 1 Semester I/ II Sch INDIAN VALUE SYSTEM AND SOCIAL CONSCIOUSNESS		L	т	Ρ	Credit
HS120		2	0	0	02

1.	Course Outcomes (COs):
	At the end of the course, the students will be able to
CO1	interpret the important values that need to be cultivated
CO2	analyse the cultures depicted in Ramayana, Mahabharata, Jainism and Buddhism
CO3	review the structure of Indian knowledge system
CO4	discuss the significance of constitution of India
CO5	demonstrate social responsibility

2.	Syllabus	
	HUMAN VALUES AND CONSCIOUSNESS	(08 Hours)
	 Human Values Definition and Classification of Values; The Problem of Hierarchy their Choice; Self-Exploration; 'Basic Human Aspirations; Right understanding and Physical Facility; fulfilment of aspirations; Understanding Happiness at Harmony at various levels. What Is Consciousness?; Can We Build A Conscious Machine?; Levels Of Conscious Matter And Beyond; Holistic Lifestyle; Dealing With Anxiety; Connecting Mind To Brains, And Programs. 	of Values and c, Relationship nd Prosperity, ousness; Mind, o Brain; Minds,
	INDIAN CULTURE AND HERITAGE	(07 Hours)
	Culture and its salient features: The Vedic – Upanishadic Culture and sc aspirations in those societies; Culture in Ramayana and Mahabharata: The I Woman, Concepts Maitri, Karuna, Seela, Vinaya, Kshama, Santi, Anuraga – as the stories and anecdotes of the Epics; The Culture of Jainism: Jaina conception and liberation, Buddhism as a Humanistic culture; The four Noble truths of Budd and Indian Culture;	ociety, Human deal Man and exemplified in of Soul, Karma hism; Vedanta
	INDIAN KNOWLEDGE SYSTEM	(08 Hours)
	Indian knowledge as a unique system, Place of Indian knowledge in mankin Relevance of Indian knowledge to present day and future of mankind, Nat Knowledge; Structure of Indian Knowledge: Types of knowledge (para, apara), and the unscientific, Instruments for gaining and verifying knowledge, Knowled Lineages, Instruments - debate, epistemology and pedagogy, The inverted tre deductive, empirical knowledge, and evolution of knowledge; Disciplines of outline of the subjects, the major contributions and theories along with tim	Id's evolution, ure of Indian The scientific dge traditions: e – axiomatic, Study: A brief nelines where

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)

Five Years Integrated M.Sc. Chemistry

relevant: Mathematics; Astronomy; Physical Sciences; Cosmogony; Lang Astrology; Moral studies/righteousness; Statecraft and political philosophy	uage studies;
	(04 hours)
History of Making of the Indian Constitution; Philosophy of the Indian Constituti Salient Features; Contours of Constitutional Rights & Duties; Organs of Parliament; Composition; Qualifications and Disqualifications; Powers and Fund	on: Preamble; Governance: ctions
SOCIAL RESPONSIBILITY	(03 Hours)
Social Responsibility: Meaning and Importance, Different Approaches of Social Social Responsibility of Business towards different Stakeholders. Evolution and CSR in India.	Responsibility. Legislation of
(Total Contact Ti	me: 30 Hours)

3.	Books Recommended
1	D. K. Chaturvedi, Professional Ethics Values and Consciousness, Ane Books Pvt. Ltd., 2023.
2	R.R. Gaur, R Sangal, G. P. Bagaria, Human Values and Professional Ethics, Excel Books, New Delhi, 2010.
3	A.N. Tripathi, Human Values, New Age Intl. Publishers, New Delhi, 2004.
4	P R Rao, Indian Heritage and Culture, Sterling Publishers Pvt. Ltd, 1988.
5	D. Singh, Indian Heritage and Culture, APH Publishing Corporation, 1998.
6	Sri Prashant Pole, Treasure Trove of Indian knowledge, Prabhat Prakashan, 2021.
7	Sri Suresh Soni, Sources of our cultural heritage, Prabhat Prakashan, 2018.
8	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Subject Code: ##nXX; ##: Department Identity, n: Year, XX: Subject Sequence number XX: last digit 0 (subject offered in both ODD and EVEN semesters, XX: 01 to 30 – last digit ODD and EVEN for ODD and EVEN semesters (Mandatory Core), XX: 31 to 50 (Optional Core), XX: 51 to 99 (Elective), Subjects list for Minor and Honor (M/H#1-4), Subjects list for Specialization track (#1-4) EG: Engineering Subject, SC: Science Subject (offered combinedly by departments) (SVNIT Surat)